ICHEP 2022 07/07/2022

Higgs couplings combination

at CMS

Matte (Unive

(University of Hamburg) On behalf of the CMS Collaboration

Matteo Bonanomi

FSP CMS

Erforschung von Universum und Materie

boson turns 10 The

"This boson is a very profound thing we have found. We're reaching into the fabric of the **universe** at a level we've never done before. [...] We're on the frontier now, on the edge of a new **exploration**. [...] we could open a whole new realm of discoveries." – J. Incandela

Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC

The ATLAS Collaboration

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

The CMS Collaboration

The Higgs sector at the LHC

Run-II: more data, more power

Higgs Couplings at CMS, 07/07/22 - M. Bonanomi

Production xsec x2-4 larger in Run-II Luminosity x10 larger than Run-I **Run-II: ~ 8 million H bosons**

ICHEP 2022 XLI 6 13 07 2022

Are the production and decay rates compatible with the SM?

Are the production and decay rates compatible with the SM?

Higgs Couplings at CMS, 07/07/22 - M. Bonanomi

ICHEP 2022 XLI

6 13 07 2022

Can we probe couplings?

Measure fermionic and bosonic couplings and probe BSM contributions

Are the production and decay rates compatible with the SM?

Higgs Couplings at CMS, 07/07/22 - M. Bonanomi

9

Can we probe couplings?

Measure fermionic and bosonic couplings and probe BSM contributions

What about H profile?

Measure H self-coupling to probe EWSB mechanism

Are the production and decay rates compatible with the SM?

Higgs Couplings at CMS, 07/07/22 - M. Bonanomi

13 07 2022

er'

9

Can we probe couplings?

Measure fermionic and bosonic couplings and probe BSM contributions

What about H profile?

Measure H self-coupling to probe EWSB mechanism

Run-II combination: access to several final states, reduction of uncertainties, improved analysis techniques...

The input analyses

Decay channel	Luminosity (fb ⁻¹)	ggH	VBF	VH	ttH/tH
$H \rightarrow \gamma \gamma$	138	\checkmark	\checkmark	\checkmark	\checkmark
$H \rightarrow ZZ$	138	\checkmark	\checkmark	\checkmark	\checkmark
$H \rightarrow WW$	138	\checkmark	\checkmark	\checkmark	\checkmark
$H \rightarrow bb$	36 (ttH), 77 (VH), 138 (ggH)	\checkmark	\checkmark	\checkmark	\checkmark
$H \rightarrow \tau \tau$	138	\checkmark	\checkmark	\checkmark	\checkmark
$H \rightarrow \mu \mu$	138	\checkmark	\checkmark	\checkmark	\checkmark
$H \rightarrow Z\gamma$	138	\checkmark	\checkmark		
$H \rightarrow inv$	138	\checkmark	\checkmark	\checkmark	

Run-II combination: comprehensive characterisation of the H boson profile at LHC!

--- ±2 SDs (stat \oplus syst)

Higgs Couplings at CMS, 07/07/22 - M. Bonanomi

 $\mu = 1.002 \pm 0.057 = 1.002 \pm 0.036$ (theory) ± 0.033 (exp.) ± 0.029 (stat.)

More general test of SM with all μ_i^f independent also shows good agreement with SM predictions

Higgs Couplings at CMS, 07/07/22 - M. Bonanomi

ICHEP 2022 6 XLI 13 07 2022

Higgs Couplings at CMS, 07/07/22 - M. Bonanomi

138 fb⁻¹ (13 TeV)

ICHEP 2022 6 XLI 13 07 2022

Higgs Couplings at CMS, 07/07/22 - M. Bonanomi

Probe SM predictions by measuring coupling modifiers $\vec{\kappa}$ (=1 in SM):

$$\sigma_i B^f = \left(\frac{\sigma_i(\vec{\kappa}) \Gamma^f(\vec{\kappa})}{\Gamma_H(\vec{\kappa})} \right)$$

κ_V, κ_f : bosonic- and fermionic-like coupling modifiers in agreement with SM within 10%

Substantial improvement in precision with respect to Discovery and Run-I

Do we observe SM couplings?

Measure κ_V , κ_f for each vector-boson and fermion to probe expected scaling of coupling modifiers with the particle mass

CMS

Excellent agreement with scalings predicted by the SM: $\kappa_V \propto m_V^2$, $\kappa_f \propto m_f$

Statistical and systematic uncertainties contribute at the same level to all measurements but κ_{μ}

What about more couplings?

Probe extensions of the SM introducing additional modifiers for gluon, photons, and $Z\gamma$ couplings

Excellent **agreement with** the **SM, at** the **level of 10%** for most coupling modifiers

Undetected and invisible decays not included in this model

$$\frac{\Gamma_{\rm H}}{\Gamma_{\rm H}^{\rm SM}} = \frac{\kappa_{\rm H}^2}{(1 - (B_{\rm inv} + B_{\rm undet.}))}$$

Constraint on $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{SM}$ from single-Higgs :

NLO EW corrections to production cross sections and decay widths could cause $\kappa_{\lambda} \neq 1$

Constraint on $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{SM}$ from single-Higgs :

NLO EW corrections to production cross sections and decay widths could cause $\kappa_{\lambda} \neq 1$

Inclusive production and decay rates scale as

$$\mu_i(\kappa_{\rm V},\kappa_{\rm F},\kappa_{\lambda}) = Z_{\rm H}^{\rm BSM}(\kappa_{\lambda}) \left[S_i(\kappa_{\rm V},\kappa_{\rm F}) + K_{\rm BSM}(1-\kappa_{\lambda}) \right].$$

$$\mu^{f}(\kappa_{\rm V},\kappa_{\rm F},\kappa_{\lambda}) = \frac{S_{f}(\kappa_{\rm V},\kappa_{\rm F}) + (\kappa_{\lambda}-1)C^{f}}{\sum_{d}\Gamma^{\rm SM}_{d}\left(S_{d}(\kappa_{\rm V},\kappa_{\rm F}) + (\kappa_{\lambda}-1)C^{d}\right)}$$

A look onto the future:

Higgs Couplings at CMS, 07/07/22 - M. Bonanomi

ICHEP 2022 6 XLI 13 07 2022

Full Run-II combination gives a comprehensive characterisation of the Higgs, 10 years after discovery

- Fourfold improvement in precision with respect to the discovery in most of the results
- Similar statistical and systematic components of the uncertainty, results will soon be limited by latter

Probe the SM predictions and test for possible presence of BSM physics via

- Signal strength modifiers $\mu = 1.002 \pm 0.036$ (theory) ± 0.033 (exp.) ± 0.029 (stat.)
- Higgs coupling modifiers ($\kappa_V, \kappa_f, \kappa_\lambda$) show excellent agreement with SM predictions at 10% level
- Observed invisible and undetected branching ratios are compatible with zero

Substantial enhancement in precision in future combinations ...

Higgs Couplings at CMS, 07/07/22 - M. Bonanomi

23

Full Run-II combination gives a comprehensive characterisation of the Higgs, 10 years after discovery

- Fourfold improvement in precision with respect to the discovery in most of the results
- Similar statistical and systematic components of the uncertainty, results will soon be limited by latter

Probe the SM predictions and test for possible presence of BSM physics via

- Signal strength modifiers $\mu = 1.002 \pm 0.036$ (theory) ± 0.033 (exp.) ± 0.029 (stat.)
- Higgs coupling modifiers ($\kappa_V, \kappa_f, \kappa_\lambda$) show excellent agreement with SM predictions at 10% level
- Observed invisible and undetected branching ratios are compatible with zero

Substantial enhancement in precision in future combinations ...

Higgs Couplings at CMS, 07/07/22 - M. Bonanomi

ICHEP 2022 6 XLI 13 07 2022

Stay tuned for precision physics era at HL-LHC!

