Higgs boson differential and STXS measurements

Alessandro Tarabini (LLR, IPP, École Polytechnique)

Bosonic channels

On behalf of the CMS collaboration

ICHEP 2022 07/07/2022

INSTITUT POLYTECHNIQUE DE PARIS

Decay channels

- Clean and clear signal signature: two reconstructed isolated photons
- Narrow peak over smoothly falling **background** (excellent photon energy resolution)
- Backgrounds: QCD $\gamma\gamma$ production, γ +jet, jet-jet

Alessandro Tarabini

• Second highest BR (~ 21.5%)

- Reconstruction of the Higgs boson mass from visible decay products is impossible due to **neutrinos**
- Backgrounds: W^+W^- , $t\bar{t} + tW$, $\tau^+\tau^-$, minor bkgs ($W\gamma$, diboson, W^+W^-+2 jets, ...), and non-prompt leptons

$H \rightarrow WW$

- $H \rightarrow ZZ^* \rightarrow 4\ell$ • Narrow peak over flat background
- Small BR (~0.028%)
- Three different final states: $2e2\mu$, 4e, 4μ
- Backgrounds: non-resonant ZZ production $(q\bar{q} \rightarrow ZZ, gg \rightarrow ZZ)$, EW processes (ZZZ, WZZ, WWZ, $t\bar{t}Z$, ...), and Z+X (Z+jets, $t\bar{t}$ +jets, ...)

Decay channels

Alessandro Tarabini

Going differential: STXS

Simplified Template Cross Sections

Maximise sensitivity to isolate BSM effects while reducing theory dependence

- All presented results are based on stage 1.2 of the STXS framework
- Central recommendation from LHC Higgs Working Group
- Each analysis, depending on its sensitivity and features, has to merge some STXS bins to avoid large uncertainties or high correlations
- However, **merging bins reduces** the model-independence

Alessandro Tarabini

STXS in $H \rightarrow \gamma \gamma$

- Extensive use of **BDT** and **DNN** to build categories targeting STXS bins
- Two sets of results are presented for Hgg with two levels of granularity:
 - <u>Maximal merging scenario</u>: STXS bins are merged until their expected uncertainty is less than 150%
 - <u>Minimal merging scenario</u>: Merge as few bins as possible whilst ensuring that parameters do not become too anti-correlated

STXS in $H \rightarrow \gamma \gamma$

- Extensive use of **BDT** and **DNN** to build categories targeting STXS bins
- Two sets of results are presented for Hgg with two levels of granularity:
 - Maximal merging scenario: STXS bins are merged until their expected uncertainty is less than 150%
 - Minimal merging scenario: Merge as few bins as possible whilst ensuring that parameters do not become too anti-correlated

- • $p_T(H) > 200 \text{ GeV}$
- Precision less than 40%
- Consistent with SM

 $\sigma_{\rm obs} B$ (fb)

SM

Ratio to

10²

10

10⁻¹

0.5

10.1007/JHEP07(2021)027

- •tH production mode measured separately from ttH
- Best tH measurement up to date
- Observed (expected) 95% CL limit is 14 (8) x SM value

STXS in $H \rightarrow \gamma \gamma$

- Extensive use of **BDT** and **DNN** to build categories targeting STXS bins
- Two sets of results are presented for Hgg with two levels of granularity:
 - Maximal merging scenario: STXS bins are merged until their expected uncertainty is less than 150%
 - Minimal merging scenario: Merge as few bins as possible whilst ensuring that parameters do not become too anti-correlated

To avoid large correlations all VBF-like bins (in ggH and qqH) are merged together

B (fb)

σ_{obs}

SM

t0

Ratio

STXS in $H \rightarrow ZZ^* \rightarrow 4\ell$

•Extensive use of **kinematic discriminants** based on matrix-element probabilities

•Categories are defined on the multiplicity of jets, b-tagged jets, additional leptons, invariant mass of the two leading jets, transverse momentum of the ZZ candidate, and kinematic discriminants

•2D likelihood fit in $(m_{4\ell}, \mathscr{D})$ in [105,140] GeV,

where \mathcal{D} is a kinematic discriminant to separate signal from backgrounds depending on the category

0.6

0.5

0.7

0.8

0.9

D_{2iet}

0.3

Example of kinematic discriminants used for the 2D fit

Higgs boson differential and STXS measurements - bosonic channels

STXS in $H \rightarrow ZZ^* \rightarrow 4\ell$

<u>10.1140/epjc/s10052-021-09200-x</u>

- •Both same-flavour $H \to W^+ W^- \to e^{\pm} \mu^{\mp} \nu \bar{\nu}$ and **different-flavour** $H \rightarrow W^+W^- \rightarrow e^+e^-\nu\bar{\nu} \ (\mu^+\mu^-\nu\bar{\nu})$ final states are used
- •Extensive use of **DNN** for categorisation
- •Analysis targets only ggH, qqH, and VH
- •Good sensitivity to **ggH** process

Going differential: fiducial

Fiducial differential cross sections

Optimised for maximal theory independence

- Fiducial volume is analysis-dependent and defined to match as closely as possible experimental selections to attain model-independence
- Thanks to Run2 statistics the number of observables is growing as well as their granularity
- Choice of bin-boundaries:
 - **Bins aligned** to ease the upcoming combination that will include $H \rightarrow \gamma \gamma, H \rightarrow ZZ, H \rightarrow WW, H \rightarrow \tau \tau, \text{ and } H \rightarrow bb$
 - Having enough statistics to have a **low expected uncertainty** on the cross-section
 - Ensuring a good level of **S/B** value

First-time presentation in a conference

- Extensive collection of results both inclusive and differential
- Some observables measured in VBF-enriched phase-space ($N_{jets} \ge 2, \Delta \eta_{jj} > 3.5, m_{jj} > 200 \text{ GeV}$)
- Inclusive fiducial cross sections measured in dedicated phase-space regions designed to loosely target specific production modes:
 - •**ttH-like** phase space: $N_{lep} \ge 1$, $N_{bjet} \ge 1$
 - •VH-like phase space: $N_{lep} = 1$, $p_{T,miss} < 100$ GeV
 - •WH-like phase space: $N_{lep} = 1$, $p_{T,miss} > 100$ GeV
- First-time measurement of a **rapidity-weighed** jet observables
- **Double-differential observables**

 $oldsymbol{\sigma}_{fid}(\mathrm{fb})$

 10^{2}

 10^{1}

 10^{0}

 10^{-1}

 10^{-2}

 $H o \gamma \gamma$

Inclusive

First-time presentation in a conference

- Extensive collection of results both inclusive and differential
- Some observables measured in VBF-enriched phase-space ($N_{jets} \ge 2, \Delta \eta_{jj} > 3.5, m_{jj} > 200 \text{ GeV}$)
- Inclusive fiducial cross sections measured in dedicated phase-space regions designed to loosely target specific production modes:
 - •ttH-like phase space: $N_{lep} \ge 1$, $N_{bjet} \ge 1$
 - •VH-like phase space: $N_{lep} = 1$, $p_{T,miss} < 100$ GeV
 - •WH-like phase space: $N_{lep} = 1$, $p_{T,miss} > 100$ GeV
- First-time measurement of a **rapidity-weighed** jet observables
- **Double-differential observables**

 $oldsymbol{\sigma}_{fid}(\mathrm{fb})$

 10^{2}

 10^{1}

 10^{0}

 10^{-1}

 10^{-2}

 $H o \gamma \gamma$

Inclusive

First-time presentation in a conference

- Extensive collection of results both inclusive and differential
- Some observables measured in VBF-enriched phase-space ($N_{jets} \ge 2, \Delta \eta_{jj} > 3.5, m_{jj} > 200 \text{ GeV}$)
- Inclusive fiducial cross sections measured in **dedicated phase-space regions** designed to loosely target specific production modes:
 - •**ttH-like** phase space: $N_{lep} \ge 1$, $N_{biet} \ge 1$
 - •VH-like phase space: $N_{lep} = 1$, $p_{T,miss} < 100$ GeV
 - •WH-like phase space: $N_{lep} = 1$, $p_{T.miss} > 100$ GeV
- First-time measurement of a **rapidity-weighed** jet observables
- Double-differential observables

Higgs boson differential and STXS measurements - bosonic channels

14

First-time presentation in a conference

- Extensive collection of results both inclusive and differential
- Some observables measured in VBF-enriched phase-space ($N_{jets} \ge 2, \Delta \eta_{jj} > 3.5, m_{jj} > 200 \text{ GeV}$)
- Inclusive fiducial cross sections measured in **dedicated phase-space regions** designed to loosely target specific production modes:
 - •**ttH-like** phase space: $N_{lep} \ge 1$, $N_{bjet} \ge 1$
 - •VH-like phase space: $N_{lep} = 1$, $p_{T,miss} < 100$ GeV
 - •WH-like phase space: $N_{lep} = 1$, $p_{T,miss} > 100$ GeV
- First-time measurement of a **rapidity-weighed** jet observables
- Double-differential observables

<u>CMS-PAS-HIG-19-016</u>

$$\tau_{\rm C}^{\rm j} = \max_{\rm j} \left(\frac{\sqrt{E_{\rm j}^2 - p_{\rm j}^2}}{2\cosh\left(Y_{\rm j} - p_{\rm j}^2\right)} \right)$$

Binning in such observables rather than in p_T^j does not introduce extra logarithms (or minimises their contribution) in the resummation region (lowpT) of ggH XS calculations leading to **precise theoretical** computations and test of **QCD** resummation

Higgs boson differential and STXS measurements - bosonic channels

15

First-time presentation in a conference

- Extensive collection of results both inclusive and differential
- Some observables measured in VBF-enriched phase-space ($N_{jets} \ge 2, \Delta \eta_{jj} > 3.5, m_{jj} > 200 \text{ GeV}$)
- Inclusive fiducial cross sections measured in dedicated phase-space regions designed to loosely target specific production modes:
 - •**ttH-like** phase space: $N_{lep} \ge 1$, $N_{bjet} \ge 1$
 - •VH-like phase space: $N_{lep} = 1$, $p_{T,miss} < 100$ GeV
 - •WH-like phase space: $N_{lep} = 1$, $p_{T,miss} > 100$ GeV
- First-time measurement of a **rapidity-weighed** jet observables

• **Double-differential observables**

<u>CMS-PAS-HIG-19-016</u>

Higgs boson differential and STXS measurements - bosonic channels

Differential in $H \rightarrow ZZ^* \rightarrow 4\ell_{\frac{10.1140/epjc/s10052-021-09200-x}{2}}$

•Inclusive result quoted both inclusive and separately in the three final states

separately in the three final states

observables targeting production

Alessandro Tarabini

Higgs boson differential and STXS measurements - bosonic channels

18

separately in the three final states

observables targeting production

states

Alessandro Tarabini

Higgs boson differential and STXS measurements - bosonic channels

19

Differential in $H \rightarrow WW$

Alessandro Tarabini

Higgs boson differential and STXS measurements - bosonic channels

10.1007/JHEP03(2021)003

Unlike the STXS analysis, only $H \to W^+ W^- \to e^{\pm} \mu^{\mp} \nu \bar{\nu}$ is considered to suppress DY bkg

Inclusive fiducial cross section

$$\sigma_{SM}^{fid} = 82.5 \pm 4.2 \text{ fb}$$

- Choice of bin boundaries
 - Larger than the p_T^H resolution ($\simeq p_T^{miss}$ resolution $\simeq 20$ GeV)
 - At high p_T^H to have an **expected** uncertainty less than 100%

Regularised unfolding

- Large off-diagonal elements in the unfolding matrix
- Tikhonov regularisation

Differential in $H \rightarrow WW$

 $\sigma^{fid} = 86.5 \pm 9.5 \text{ f}$

Alessandro Tarabini

Higgs boson differential and STXS measurements - bosonic channels

10.1007/JHEP03(2021)003

Unlike the STXS analysis, only $H \to W^+ W^- \to e^{\pm} \mu^{\mp} \nu \bar{\nu}$ is considered to suppress DY bkg

Inclusive fiducial cross section

$$\sigma_{SM}^{fid} = 82.5 \pm 4.2 \text{ fb}$$

• Choice of bin boundaries

- Larger than the p_T^H resolution ($\simeq p_T^{miss}$ resolution $\simeq 20$ GeV)
- At high p_T^H to have an **expected** uncertainty less than 100%

Regularised unfolding

- Large off-diagonal elements in the unfolding matrix
- Tikhonov regularisation
- It counters negative correlations

Conclusions

Where do we stand on uncertainty? $H \to ZZ^* \to 4\ell$ $\rightarrow WW$ $\sigma_{fid} = 2.84^{+0.34}_{-0.31} \stackrel{(12.0\%)}{_{(10.0\%)}} \text{fb}$ $5 \pm 0.12 \ (11.4\%)$ $\sigma_{fid} = 2.84^{+0.23}_{-0.22} \stackrel{(8.1\%)}{(7.7\%)} \text{(stat.)}^{+0.26}_{-0.21} \stackrel{(9.2\%)}{(7.4\%)} \text{(sys.) fb}$ %) (stat.) ± 0.10 (9.5%) (sys.)

$$H \rightarrow \gamma \gamma \qquad H \rightarrow \sigma_{fid} = 73.4^{+6.1 (8.3\%)}_{-5.3 (7.2\%)} \text{ fb} \qquad \mu_{fid} = 1.05$$

$$\sigma_{fid} = 73.4^{+5.4 (7.4\%)}_{-5.3 (7.2\%)} \text{ (stat.)}^{+2.4 (3.3\%)}_{-2.2 (2.3\%)} \text{ (sys.) fb} \qquad \mu_{fid} = 1.05 \pm 0.05 (4.8\%)$$

Fiducial Cross Sections and Simplified Template Cross Sections provide two complementary ways to measure the Higgs boson properties and **CMS Run2 results** have been presented in the bosonic decay channels

Overall good agreement with SM

The current uncertainty on the ggH XS is about 6%

$H \rightarrow \gamma \gamma$ is very close to measure the fiducial cross section **at the same level of precision** of the leading production mode

 $H \rightarrow \gamma \gamma$ systematic uncertainty is well below the ggH theoretical precision

$H \rightarrow WW$ is dominated by systematics

Systematic and statistical uncertainty in $H \rightarrow ZZ$ are of the **same magnitude**

Conclusions

Where do we stand on uncertainty? $H \to ZZ^* \to 4\ell$ $\rightarrow WW$ $\sigma_{fid} = 2.84^{+0.34}_{-0.31} \stackrel{(12.0\%)}{_{(10.9\%)}} \text{ fb}$ $5 \pm 0.12 \ (11.4\%)$ $\sigma_{fid} = 2.84^{+0.23}_{-0.22} \stackrel{(8.1\%)}{(7.7\%)} \text{(stat.)}^{+0.26}_{-0.21} \stackrel{(9.2\%)}{(7.4\%)} \text{(sys.) fb}$ %) (stat.) ± 0.10 (9.5%) (sys.)

$$\begin{array}{l} H \rightarrow \gamma \gamma & H \rightarrow \sigma_{fid} = 73.4^{+6.1\ (8.3\%)}_{-5.3\ (7.2\%)} \ \text{fb} & \mu_{fid} = 1.05 \\ \sigma_{fid} = 73.4^{+5.4\ (7.4\%)}_{-5.3\ (7.2\%)} \ (\text{stat.})^{+2.4\ (3.3\%)}_{-2.2\ (2.3\%)} \ (\text{sys.}) \ \text{fb} & \mu_{fid} = 1.05 \pm 0.05 \ (4.8\%) \\ \end{array}$$

We are officially entering in the precision era of the Higgs physics Looking forward to see results from Run3

Higgs boson differential and STXS measurements - bosonic channels

Alessandro Tarabini

- Fiducial Cross Sections and Simplified Template Cross Sections provide two complementary ways to measure the Higgs boson properties and **CMS Run2 results** have been presented in the bosonic decay channels
 - Overall good agreement with SM

- The current uncertainty on the ggH XS is about 6%
- $H \rightarrow \gamma \gamma$ is very close to measure the fiducial cross section **at the same level of precision** of the leading production mode
 - $H \rightarrow \gamma \gamma$ systematic uncertainty is well below the ggH theoretical precision

$H \rightarrow WW$ is **dominated by systematics**

Systematic and statistical uncertainty in $H \rightarrow ZZ$ are of the **same magnitude**

STXS workflow

Alessandro Tarabini

Higgs boson differential and STXS measurements - bosonic channels

STXS impacts in $H \rightarrow \gamma \gamma$

Alessandro Tarabini

Higgs boson differential and STXS measurements - bosonic channels

STXS in $H \to ZZ^* \to 4\ell$

Alessandro Tarabini

Higgs boson differential and STXS measurements - bosonic channels

STXS in $H \rightarrow WW$

Alessandro Tarabini

Reco-level differential distributions $H \rightarrow WW$

137 fb⁻¹ (13 TeV)

$H \rightarrow WW$ backgrounds

•Backgrounds

Floating bkg normalisation

- MC estimation
- Data-driven method

Correlations matrices for fiducial $H \rightarrow WW$

CMS					137 fb ⁻¹ (13 TeV)	
$p_{\rm T}^{\rm H}$ (GeV)	0.034	0.010	0.039	0.020	-0.083	
120–200	0.052	0.040	0.101	-0.176		-0.197
80–120	0.034	0.122	-0.265		-0.393	0.114
45–80	0.305	-0.372		-0.483	0.270	-0.019
20–45	-0.556		-0.551	0.283	-0.076	0.026
0–20		-0.653	0.457	-0.130	0.130	0.008
	0–20	20–45	45–80	80-120	120–200	>200 $p_{\rm T}^{\rm H}$ (GeV)

Higgs boson differential and STXS measurements - bosonic channels

$H \rightarrow ZZ^* \rightarrow 4\ell$ mus impacts

