Measurement of the Higgs boson couplings and their interpretations in fermionic final states at the ATLAS experiment

Giulia Di Gregorio on behalf of the ATLAS Collaboration

ICHEP 2022 7th July 2022

Introduction

- Higgs to fermionic final states represent ~ 70% of the Higgs decays.
- Measurement of the **Higgs coupling to fermions** can provide **stringent tests** of validity of **SM**.
- All Higgs to third generation fermion couplings have been observed
- Higgs to fermionic final states **studied** looking to **different production modes**
- <u>Outline</u> only latest results using full Run 2 dataset:
 - Coupling to third generation fermions:
 - $H \rightarrow b\bar{b}$
 - $t\bar{t}H$
 - $H \rightarrow \tau \bar{\tau}$
 - Simplified template cross-section (STXS) and coupling interpretations
- More info on Higgs to second generation fermions in Robert's <u>talk</u>

Ш

Ш

$VH(b\bar{b})$ combination

- Best sensitivity for dominant $H \rightarrow b\bar{b}$ decay in VH production due to high trigger efficiency and background suppression when targeting V \rightarrow lepton decays.
- $VH(b\bar{b})$ final states studied by two analyses and significant overlap between the two analyses Resolved analysis

- In the combination drop resolved events with $p_T^V > 400$ GeV and use boosted only in $p_T^V > 400$ GeV
- STXS measurements in 7 STXS bins
 - Good agreement with SM predictions.
 - Most precise measurement of the VH production

ATLAS-CONF-2021-051

$VH(b\bar{b})$ combination: EFT interpretation

- Parameterization of BSM effects using effective Lagrangian with dimension-6 operators in the Warsaw basis: $\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum c_i^{(6)} \cdot \mathcal{O}_i^{(6)} / \Lambda^2$
 - $c_i^{(6)}$ = Wilson coefficient
 - $\mathcal{O}_i^{(6)}$ = dimension-6 operator
 - $\Lambda = BSM$ scale

All-had $H \rightarrow b\bar{b}$ analysis

- Analysis targeting boosted Higgs recoiling against a jet
- Final state with **two large-R jets**:
 - <u>Higgs candidate</u>:
 - $p_T > 450 \text{ GeV}, m_J > 60 \text{ GeV};$
 - 2 b-tagged VR track jets

Phys.Rev.D105(2022)092003

Fractional contribution for each signal production mode

At least one iet

p_>450 GeV

signaliet

2x b-tagged VR track jets

	0			
Process	250 - 450	Jet $p_{\rm T}$ rates 450–650	> 1000	
		SRL		
ggF	_	0.56	0.50	0.39
VBF	_	0.17	0.16	0.17
VH	_	0.14	0.18	0.25
$t\bar{t}H$	_	0.13	0.16	0.19
		\mathbf{SRS}		
ggF	0.28	0.46	0.43	_
VBF	0.07	0.19	0.21	_
VH	0.26	0.24	0.26	_
$t\bar{t}H$	0.39	0.11	0.10	_

• Event categorization

• <u>SR</u>: SRL(SRS) in which the (sub-) lead. large-R jet is double b-tagged

Subleading

- <u>VR</u>: to study multi-jet and V+jet model
 - Multi-jet production modelled using parametric function
- $\underline{CR}_{t\overline{t}}$: to study top events;
 - Requiring one hadronic top decay and one muonic top decay

• 95% CL limits are set on the cross-sections

1500

p₊^H [GeV]

500

1000

VBF, $H \rightarrow b\bar{b}$ analysis

- <u>VBF, H $\rightarrow b\bar{b}$ all-had</u> <u>Eur. Phys. J. C 81 (2021) 537</u>
 - Select events with 2 central b-tagged and 2 VBF-like jets
- <u>VBF, H \rightarrow $b\bar{b}$ + photon</u> <u>JHEP 03 (2021) 268</u>
 - Similar to the inclusive analysis but with an additional photon
 - Multi-jet bkg is suppressed and VBF purity is enriched
- <u>Main bkgs</u>: QCD multi-jet and $Z(b\bar{b})$ +jets
 - $Z(b\bar{b})$ +jets constrained directly from data
- Machine learning (BDTs and ANNs) used to distinguish signal from bkg and to define analysis categories.

Entries/4 GeV

600

500

300

50

80

Data - Non-res

[:]+tṫH+VH SN ⁼ *H→b℔* (μ

karound+signal uncertainty

120

Non-resonant

100

ATLAS √s=13 TeV, 126 fb⁻¹

 $H \rightarrow b\overline{b}$

Central

SR1

=0.95+0.3

140

160

180 200 *m_{bb}* [GeV]

ttH(bb) analysis

- **Top-Yukawa coupling** can be probed **directly** with the *ttH* production
 - Strongest Yukawa coupling

- Target events with one (single-lep) or two (dilepton) leptonically decaying tops
- Events classified according to the number of leptons*, number of jets and number of b-jets
- <u>Machine learning techniques</u> used to classify the events and distinguish $t\bar{t}H$ and bkgs
 - $t\bar{t}$ +jets is the dominant bkg \rightarrow constrained using CRs

*lepton = electron or muon

ttH(bb) analysis: results

				- L - '			
	ATLAS	√s=13 TeV, 139 fb ⁻¹ , m _H =125 GeV SM compatibility: 8.5%					
	— Total	-Stat.		Tot.	(Stat.	Syst.)	
I+jets resolved	HOH		0.30	+0.43 –0.41	(+0.22 (-0.21	+0.37 -0.34)	
I+jets boosted	H • H		0.32	+0.61 0.57	(+0.45 (-0.42	+0.41 -0.38)	/
Dilepton	H-	4	0.60	+0.69 -0.65	(+0.40 -0.39	+0.56 -0.52)	
Inclusive	HOH		0.35	+0.36 0.34	(+0.20 -0.20	^{+0.30} -0.28)	
-	20	2 4	1	6	8	1	0
					$\mu_{t\bar{t}H} = c$	σ ^{tīΗ} /σ ^{tī⊢}	1 /1

- Cross-section measurement in 5 STXS bins
 - STXS bins defined on transverse momentum of the Higgs p_T^H
- First *ttH*(*bb*) STXS cross-section measurements
- First cross-section measurement in p_T^H
 > 300 GeV

Boosted category in $p_T^H > 300$ GeV single-lep chan.

- **Profile likelihood fit** to extract μ_{ttH}
- Measurement dominated by syst unc.
 - $t\bar{t}$ modelling is the dominant contribution

$H \rightarrow \tau \tau$ analysis

- Most sensitive probe of Higgs boson coupling to leptons
 - Second most copious fermionic decay (BR $\sim 6.3\%$)
- Analysis targets all dominant production modes
- Events classified by τ decay channels.
- Binned maximum-likelihood fit to $m_{\tau\tau}$

- STXS measurement in 9 STXS bins:
 - Good agreement with SM prediction;
 - O(40%) accuracy in some ggF and VBF bins

Conclusion

- Higgs decays into fermions extensively studied using Run 2 analyses
 - Higgs decay into third generation fermions offers a unique opportunity to study the Yukawa coupling with fermions
 - Couplings to third generation fermions are very well established
 - Good agreement with the SM predictions
- Cross-section measurements using the Simplified Template Cross-Section framework.
- **Run 3** will offer **exciting opportunity** to further study **fermion couplings** → **stay tuned!**

Run: 338349 Event: 616525246 2017-10-16 20:24:46 CEST

Back-up slides

STXS framework

- Framework for **subdividing Higgs Boson measurements into orthogonal regions** *STXS bins* [defined using generator level information]
 - $(\sigma \times B)$ measurement for each bin
- STXS bins chosen such that they:
 - are defined by Higgs production modes;
 - reduce theory uncertainties
 - isolate regions potentially sensitive to BSM;
- <u>STXS stage 1.2</u> Higgs boson signal split according to
 - production modes,
 - number of jets
 - p_T^H/p_T^V ;
 - invariant mass of the leading jets m_{jj} .
- <u>Advantage</u>: easy to combine different analyses.

VH($b\bar{b}$) channel

(R=0.4) *b*-tagged [70% efficiency for *b*-jets]

• 2 leading track jets *b*-tagged [70% efficiency for *b*-jets]

EFT cross-section parametrization

- Parameterization of BSM effects using effective Lagrangian with dimension-6 operators in the Warsaw basis: $\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum c_i^{(6)} \cdot \mathcal{O}_i^{(6)} / \Lambda^2$
 - $c_i^{(6)}$ = Wilson coefficient
 - $\mathcal{O}_i^{(6)}$ = dimension-6 operator
 - $\Lambda = BSM$ scale
- EFT cross-section parametrisation

 $\sigma_{EFT} = \sigma_{SM} + \sigma_{int} + \sigma_{BSM}$

Linear term Quadratic term

VH($b\bar{b}$) results

 $VH, H \rightarrow b\bar{b}$ combination

ATLAS-CONF-2021-051

- Significant overlap between the VH($b\bar{b}$) resolved and VH($b\bar{b}$) boosted analyses
- In the combination drop resolved events with $p_T^V > 400$ GeV and use boosted only in $p_T^V > 400$ GeV

All-had $H \rightarrow b\bar{b}$ analysis: bkg contributions

VBF, $H \rightarrow b\bar{b}$ analysis: event categorisation

- Adversarial Neural Network (ANN) for event categorization
 - Training performed between MC signal and data sidebands*
 - Loss function to penalise m_{bb} and score correlation
 - Each channel is divided into **5 regions**

Input variables:

• *m*_{jj} • *p*_{T,jj}

• p_T^{balance}

•
$$(p_T^{j_1} - p_T^{j_2})/(p_T^{j_1} + p_T^{j_2})$$

•
$$\Delta\eta(bb, jj)$$

•
$$\Delta \phi(bb, jj)$$

•
$$\tan^{-1}(\tan(\Delta\phi(bb)/2) / \tanh(\Delta\eta(bb)/2))$$

- n_{jets}
- $\min(\Delta R(j_{1(2)}))$

$$N_{trk}^{J_{1(2)}}$$

*70 GeV < m_{bb} < 100 GeV and 140 GeV < m_{bb} < 200 GeV

G. Di Gregorio - ICHEP 2022

$t\bar{t}H(b\bar{b})$ analysis: analysis regions

Decion	Dilepton				Single-lepton			
Region	$\mathrm{SR}^{\geq 4j}_{\geq 4b}$	$\mathrm{CR}^{\geq 4j}_{3b~\mathrm{hi}}$	$CR_{3b lo}^{\geq 4j}$	$\mathrm{CR}^{3j}_{3b~\mathrm{hi}}$	$\mathrm{SR}^{\geq 6j}_{\geq 4b}$	$\operatorname{CR}^{5j}_{\geq 4b \text{ hi}}$ ($CR^{5j}_{\geq 4b \ lo}$	$\mathrm{SR}_{\mathrm{boosted}}$
#leptons	= 2			= 1				
#jets	≥ 4 =			= 3	≥ 6	= 5		≥ 4
@85%	_				≥ 4			
#h.tag	_			$ \geq 2$			$\geq 2^{\dagger}$	
#0-tag @70%	≥ 4		= 3		≥ 4			—
@60%	_	= 3	< 3	= 3	_	≥ 4	< 4	—
#boosted cand.		-	_			0		≥ 1
Fit input	BDT		Yield		BDT/Yield	$\Delta R_{bb}^{\mathrm{av}}$	vg b	BDT

$H \rightarrow \tau \tau$ analysis: STXS uncertainty

STXS bin			SM prediction	Result	Stat. unc.	Syst. unc. [fb]			
Process	$m_{jj} \ [{ m GeV}]$	$p_{\rm T}(H) \; [{\rm GeV}]$	N_{jets}	[fb]	[fb]	[fb]	Th. sig.	Th. bkg.	Exp.
d)H	$[0, 350]^{\bigstar}$	[60, 120]	≥ 1	394 ± 60	189 ± 390	± 220	± 59	± 152	± 240
$\rightarrow q$		$[120,\ 200]$	= 1	$47 \ \pm \ 11$	17 ± 30	± 18	± 4	± 4	± 16
Z.	[0, 350]	[120, 200]	≥ 2	59 ± 20	33 ± 39	± 27	± 10	± 10	± 23
<i>б</i> і — бі		[200, 300]	≥ 0	30 ± 9	$30.3~\pm~11.0$	± 8.6	± 2.9	± 0.8	± 5.6
5+		$[300, \infty[$	≥ 0	7.7 ± 3.0	9.35 ± 3.80	± 3.50	± 1.00	± 0.22	± 1.20
ggF	$[350, \infty[$	[0, 200]	≥ 2	$55~\pm~13$	143 ± 110	± 54	± 58	± 6	± 71
$\mathbf{F}\mathbf{W}$	[60, 120]		≥ 2	33.1 ± 1.1	32 ± 20	± 17	± 4	± 2	± 6
	$[350, \infty[$		≥ 2	90.1 ± 2.2	71 ± 17	± 13	± 10	± 2	± 4
$t\overline{t}H$				31.3 ± 3.2	34 ± 37	± 32	± 7	±10	±8