

Andrey Pozdnyakov

(RWTH Aachen) on behalf of CMS Collaboration

> ICHEP-2022, Bologna, Italy July 07, 2022

Introduction and outlook

- On the way to fully characterize the Higgs boson: coupling to charm
- Few ways to constrain Higgs charm coupling at CMS:
 - Direct search for H → cc decay: in ggH and VH channels
 - Indirect constraints from Higgs kinematics
 - Rare $H \rightarrow J/\psi + \gamma$ decay
- What is the projection for HL-LHC?

<u>dall-e mini</u> image based on phrase: "Constraints on Higgs-charm coupling by CMS" <u>10.5281/zenodo.5146400</u>

Search in ggH channel

- ≻ Higgs candidate is a anti-kt jet with R=0.8 (AK8), p_T>450 GeV
 - not a pure ggH signal:
 - 50% ggF (ggH+jet)
 - 30% VBF
- Double-charm tagging with NN:
 - CNN/RNN with low level inputs
 - Mass independent using dedicated simulation samples

ggH(cc) results

- Limit at 45 (38) x SM @95% CL
- > Validation of techniques with $Z \rightarrow c\bar{c}$ candle
 - Observation with >> 5 sigma
- See <u>poster by Andrzej Novak</u> for more details

CMS-PAS-HIG-21-012

 ℓ/ν

Z/W

 $V+H(c\bar{c})$

Andrey Pozdnyakov (RWTH)

q

q

$VH(c\bar{c})$ search at a glance

ParticleNet: charm tagger for AK15 jets

- ParticleNet: a multi-class jet classifier for t/H/W/Z tagging of fat jets
 - permutation-invariant GNN with EdgeConv
 - jet = unordered set of particles
- > Use low-level jet features as inputs (PF candidates, SVs)
- Scores for: $X \rightarrow b\overline{b}$, $X \rightarrow c\overline{c}$, $X \rightarrow 4q$, QCD ($b\overline{b}$, $c\overline{c}$, b, c, others)

cc-tagging discriminant defined as

 $P(X \rightarrow cc) / [P(X \rightarrow cc) + P(QCD)]$

July 07, 2022

Analysis sketch: boosted topology

- > Train BDT: signal vs (V+jets and $t\bar{t}$)
- > Use cc-tagger score to define 3 regions (for high BDT score)
- Fit the jet mass (also using dedicated mass regression)
- Normalization of V+jets and tt bkg from CRs (low BDT, N_{aj}>=2)

DeepJet: charm tagger for AK4 jets

- Charm jet properties are in-between udsg and b-jets
- DNN multiclasifier is used to tag the AK4 jets: DeepJet
- Efficiencies of the Working Point (for jet with highest charm-tag score):
 - 42% c-jet eff
 - 15% b-jet mistag rate
 - 4% light jet mistag rate

2022 JINST 17 P03014

July 07, 2022

Analysis sketch: 2 jets topology

- Train BDT (signal vs all backgrounds), including the mass of the H candidate as input
 - Fit the BDT distributions to set the limit
- Constrain background normalization from CRs (V+LFj, V+HFj, V+CC, tt)

July 07, 2022

Andrey Pozdnyakov (RWTH)

Expected limits and Z(cc) validation

- Final result combines merged and resolved analyses (separation on AK15 jet $p_T=300$)
- Observed (expected) UL on VH(cc) signal strength at 95% CL: µvH(cc) < 14 (7.6)
 - Strongest limit on VH(cc) process to date
 - Analysis validated with $Z \rightarrow c\bar{c}$ candle:

CMS-HIG-21-008

• $\mu_{VZ(cc)} = 1.01 + / - 0.21$

Andrey Pozdnyakov (RWTH)

0L

Constraint on k_c

 Constraint on k_c can be placed under assumption that all other H couplings fixed to SM values

 $\mu_{VH(H\to cc)} = \frac{\kappa_c^2}{1 + \mathcal{B}_{SM}(H\to cc) \times (\kappa_c^2 - 1)}$

- The 95% CL intervals obtained with likelihood scans
 - Observed: $1.1 < |k_c| < 5.5$
 - Expected: $|k_c| < 3.4$
- Strongest constraint on |k_c| from CMS (and HEP)

CMS-HIG-21-008

Indirect constraints from Higgs boson kinematics

Indirect constraints from H kinematics

• Differential distributions (p_T , |y|, N_{jets} of the H) are sensitive to H couplings

 $H \rightarrow J/\psi + \gamma$

Search for H \rightarrow J/ ψ + γ decays

July 07, 2022

Andrey Pozdnyakov (RWTH)

140

145 150

 $m_{\mu\mu\gamma}$ (GeV)

Projections to HL-LHC

Projection to HL-LHC

 From VH(cc) boosted analysis alone: simultaneous extraction of H → bb and H → cc signal strengths:

 $\mu_{VH(H \rightarrow bb)} = 1.00 \pm 0.03 \text{ (stat.)} \pm 0.04 \text{ (syst.)} = 1.00 \pm 0.05 \text{ (total)}$

 $\mu_{VH(H \rightarrow cc)} = 1.0 \pm 0.6 \text{ (stat.)} \pm 0.5 \text{ (syst.)} = 1.0 \pm 0.8 \text{ (total)}$

July 07, 2022

Andrey Pozdnyakov (RWTH)

Summary

- > CMS has released two $H \rightarrow c\bar{c}$ analysis with full Run-2 dataset
 - ggH(cc):
 - Exploring H+jet topology with boosted large-cone jets
 - Limit set at 45xSM
 - VH(cc)
 - Using two complementary approaches to fully explore the VH(H→cc) decay topology (AK4/AK15 jets).
 - Limit set at 14xSM; 1.1<|k_c|<5.5 (95%CL interval)
 - Most stringent limit to date
 - The analyses are validated by measuring Z→cc process rate
- \succ Constraints on $|k_c|$ from kinematics in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$
 - |k_c| < 35 (partial dataset)
- > Limit on H \rightarrow J/ ψ + γ process: < 220xSM

The End