

Gregorio Bernardi APC Paris, CNRS/IN2P3

On behalf of the FCC collaboration

ICHEP 2022, Bologna, 08/07/2022

Cuntieres

- What is FCC, and the FCC-ee Higgs/Physics potential
- Higgs mass and cross section measurements at FCC-ee
- Other Higgs measurements
- Next steps

FCC Even after HL-LHC, the Higgs boson/field will still need to be better understood

- → The Higgs boson is a unique object, a scalar particle/field (spin 0), not a matter field, not a boson mediating a gauge interaction, but a field carrying a new type of interaction of the Yukawa type.
- \rightarrow Many proposals for new accelerators to study it beyond LHC, and to study Beyond SM physics.
- Precise nature of the Higgs boson ?
- Origin of electroweak symmetry breaking (EWSB) ?
- Shape of the Higgs potential ?

Nambu-Goldstone Higgs

• Strength of the electroweak phase transition ? What is its role just after the big bang ? Inflation ? Does it couple to Dark Matter ?

→ We need to determine precisely and in a model independent way the Higgs couplings and the Higgs self-couplings to answer these questions.

Gregorio Bernardi APC - Paris

The FCC integrated program (ee+hh) at CERN is inspired by the successful LEP – LHC (1976-2041) program

Comprehensive cost-effective program maximizing physics opportunities

- Stage 1: FCC-ee (Z, W, H, tt) as first generation Higgs, EW and top factory at highest luminosities.
- Stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with heavy ions and eh options.

Complementary physics

- Integrating an ambitious high-field magnet R&D program
- Common civil engineering and technical infrastructures
- Building on and reusing CERN's existing infrastructure.
- FCC-INT project plan is fully integrated with HL-LHC exploitation

O FCC

The Rich FCC-ee physics program

M. Dam ECFA R&D road map input https://indico.cern.ch/event/994685/

Gregorio Bernardi APC - Paris

FCC-ee run plan

Phase	Run duration	Center-of-mass	Integrated	Event	Extracted from
	(years)	Energies (GeV)	Luminosity (ab^{-1})	Statistics	FCC CDR
FCC-ee-Z	4	88-95 ±<100) KeV 150	3×10^{12} visible Z decays	LEP * 10 ⁵
FCC-ee-W	2	158-162 <200	KeV 12	10 ⁸ WW events	LEP * 2.10 ³
FCC-ee-H	3	240 ± 2 №	leV 5	10 ⁶ ZH events	Never done
FCC-ee-tt	5	345-365 ±5N	1eV 1.5	$10^6 t\bar{t}$ events	Never done
s channel H	?	125 ± 2 N	1eV 10?	5000 events	Never done

6

Higgs boson production at FCC-ee

FCC-ee as a Higgs factory:

Higgs-strahlung (e+e \rightarrow ZH): event rate & Signal/Bkgd are optimal at $\sqrt{s} \sim 240 \text{ GeV}$: $\sigma \sim 200 \text{ fb}$

- $10^6 \text{ e+e-} \rightarrow \text{ZH} \text{ events with } 5 \text{ ab}^{-1}$
- Target : (few) per-mil precision, statistics-limited.
- Complemented with ~200k events at \sqrt{s} = 350 365 GeV (of which 30% are via the WW fusion channel)
 - → useful for measuring self-coupling and Γ_{H} precisely.
- The Higgs-strahlung process is an s-channel process \rightarrow maximal just above the threshold of the process
- Vector Boson Fusion is a *t*-channel process which yields a cross section that grows logarithmically with the c-o-mass energy

FCC Higgs studies through recoil mass in ZH production, vs. Higgs @LHC

@FCC-ee: The Higgs mass can be reconstructed from M_{recoil} in ZH events using the Z decaying leptonically and beam energy constraints, w/o looking at the H decay.

$$m_H^2 = s + m_Z^2 - 2\sqrt{s}(E_+ + E_-)$$

E+, E-lepton energies from Z decay

 $\sigma \left(e^+ e^- \to ZH \right) \propto g_{HZZ}^2$

absolute HZZ coupling meas.

 \rightarrow focus on Z resonance space

 \rightarrow Signal exhibits sharp peak around ~ 125 GeV,

 \rightarrow Low $p_T^{\mu^+\mu^-}$ cuts back-to-back events $(Z/\gamma^* \rightarrow ll)$

 \rightarrow Reduce $\gamma\gamma$ processes. ISR emitted collinearly with the incoming beams, escaping detection in the beam pipe

Signal Simulation:

1.	$Z(\mu^+\mu^-)H$	(Whizard)
2.	$Z(\tau^+\tau^-)H$	(Whizard)
3.	$Z(q\bar{q})H$	(Whizard)
4.	$v_e \overline{v_e} H$	(Whizard)
5.	e^+e^-H	(Whizard)

Event Selection:

- 1. Preselection: at least one Z boson from a $\mu^+\mu^-$ pair
- 2. $m_{\mu^+\mu^-} \in [86, 96] \text{ GeV}$
- 3. $M_{\text{recoil}} \in [120, 140] \text{ GeV}$
- 4. $p_T^{\mu^+\mu^-} \in [20, 70] \text{ GeV}$
- 5. $\left|\cos\theta_{missing}\right| < 0.98$

Backgrounds Simulation: ZZ(inclusive) 1. (Pythia) 2. $W^{+}(\nu\mu^{+})W^{-}(\bar{\nu}\mu^{-})$ (Pythia) $Z \rightarrow l^+ l^-$ (Pythia) 3. $Z \rightarrow q\bar{q}$ (Pythia) 4. 5. eeZ. (Whizard) $\gamma\gamma \rightarrow \mu^+\mu^-/\tau^+\tau^-$ 6. (Whizard)

= 240 0 GeV

 \rightarrow ZH $\rightarrow u^{+}u^{-} + X$

Preselection

events / 0.50 GeV

20

FCC-ee Simulation (Delphes)

Z(v⊽)F

Z(e'e*)H Z(t't*)H

Z(u'u*)H

"""

eeZ -Z→qq -W*(⊽u*)W*(⊽u*)

Z→Í ZZ

Signal and background fits

- Customized pdf: two crystal-ball functions (left/right), sharing mean & width, with an additional Gaussian to cope with the asymmetric tails
- $pdf(M_{recoil}) = sigfrac1 \cdot CB(M_{recoil}; \mu, \sigma, \alpha_L, n_L) + sigfrac2 \cdot CB(M_{recoil}; \mu, \sigma, \alpha_R, n_R) + (1 sigfrac1 sigfrac2) \cdot Gauss(M_{recoil}; \mu_2, \sigma_2)$

Statistical treatment of backgrounds:

- All backgrounds are merged •
- Smoothly falling background modelled as third-order polynomial fit ٠
- Polynomial coefficients constant are fitted to the data (keep total • normalization floating)
- Sufficient statistics for all backgrounds •

O FCC

Statistical Analysis of the Results

Statistical analysis performed using Combine (CMS statistical framework)

- □ Signal and background analytical shapes are fitted to pseudo-data Asimov dataset
 - Injected 125.0 GeV signal with cross-section of ~ 0.00677 pb, and simulated backgrounds
 - \succ Free parameters: signal and background normalizations, and m_H
- □ Likelihood scans to extract cross-section and Higgs mass with robust uncertainties
- \Box First, without accounting for experimental uncertainties \rightarrow statistical-only result

Effect of Different Detector configurations

Different detector configuration studied:

1. Magnetic field increased from 2T to 3T

FCC

2. Full-Silicon tracker (à la CLD) instead of drift chamber

ightarrow expect better momentum resolution

→ degraded resolution due to enhanced multiple scattering, especially at low p_T and in the range relevant for this analysis

	TESUILS		
IDEA	Δm _H (MeV)	Δσ (%)	
Nominal	6.7	1.07	
FullSilicon	9.0	1.12	
3T	5.8	1.06	

roculto

2T → 3T

- significant effect on m_H
- small effect on x-section

FCC

Systematic uncertainties

Systematic variations included in likelihood as Gaussian constraint terms

- muon scale accounts for ~ 2 MeV on Δm_H
- Beam Energy Spread (BES) ~ 1% at 240 GeV, constrained using $ee \rightarrow ff(\gamma)$
- Initial State Radiation (ISR) estimated using KKMC by reweighting Whizard prspectrum
- Muon momentum scale ~ 10⁻⁵

Inclusion of all systematics: $\Delta m_H \sim 7.2$ MeV and $\Delta \sigma \sim 1.10$ %

- →Impact on cross-section precision is limited
- \rightarrow further improvements combinining with Z \rightarrow ee & jetjet

Gregorio Bernardi APC - Paris

Physics analysis program in the FCC-ee Higgs group

Global fits in κ-3 framework (arXiv:1905.03764) Expected relative uncertainties on Higgs couplings

Ch. **HL-LHC** + 240 GeV + 240+365 GeV + FCC-hh 0.99 0.88 0.41 0.19 ĸw 0.20 0.17 0.16 0.99 ĸz 2.00 1.20 0.90 0.5 ĸ 1.60 1.3 1.3 0.31 ĸ 10.0 10.0 10.0 0.7 ĸ_{Zγ} 1.30 1.50 0.96 ĸ _ 3.20 3.10 3.10 0.96 ĸ 1.00 0.64 0.48 2.50 ĸ_b 4.40 4.00 3.90 0.43 κ_μ 0.94 0.66 ĸ 1.60 0.46 1.9 0.22 0.19 0.024 Inv.

Analysis not covered

Analysis ongoing

All other couplings would be measured with better than 1% precision at FCC-ee with 4IP (except κ_s and 1st generation)

FCC-ee numbers are given for 2 IP. Precision on couplings improves by ~30% with 4IP

Intrinsic properties

- Mass
- Decay-mode independent cross section
- Width •
- Invisible decays ٠
- Self coupling ٠

Higgs couplings

- Vector boson couplings, WW, ZZ
- **Fermions**
- **Electron Yukawa coupling** ٠

LHC caveats, comparison with FCC

- LHC measures only couplings ratios
- Many SM couplings cannot be seen at LHC (light quarks, electror
- Couplings to gluons are measured through $gg \rightarrow H$ production cross section
- HL-LHC will produce much more Higgs than FCC-ee, hence dominate the precisions for ttH, H $\mu\mu$, HZ γ until FCC-hh

13

Yukawa coupling to electrons via s-channel e+e- \rightarrow H production

First generation Yukawa coupling will not be accessible at HL-LHC, FCC-hh or any other ee machine

- Higgs decay to e^+e^- is unobservable: BR(H→ e^+e^-) $\propto m_e^{-2} \approx 5 \cdot 10^{-9}$
- Resonant Higgs production considered so far only for muon collider: $\sigma(\mu\mu\rightarrow H) \approx 70 \text{ pb. Tiny } \kappa_{P} \text{ Yukawa coupling} \Rightarrow \text{Tiny } \sigma(ee\rightarrow H):$

Most significant channel: $e^+e^- \rightarrow H \rightarrow gg \rightarrow jj$ final state

CC

Measurement of the Higgs self-coupling

Gregorio Bernardi APC - Paris

15

Summary and Outlook

- The Future Circular Collider is an ambitious project with optimized Physics potential in all SM areas, including in Higgs Physics, aimed at starting at CERN in e+e- mode, shortly after the end of the HL-LHC
- The analysis of Z(→μμ) H events yields Higgs mass uncertainty of 7.2 MeV, and 1.10% for the cross-section. Improvements are under way (combining more channels, MVA selection to increase signal statistics...)
- Increasing detector magnetic field from 2T to 3T or using a transparent drift chamber vs. a full silicon detector brings significant improvement on m_H but has a small effect on the cross-section measurement.
- Couplings measurements are foreseen to achieve better than 1% precision (except for the few statistically limited, who will be precisely measured at FCC-hh and improved significantly over those from HL-LHC)
- At FCC-ee observation of H to ee Yukawa and of Higgs self-coupling may be achieved

More on the Higgs program and on the complementarity of the ee and hh program will be developed in the following talk

backup

Physics of the Higgs boson at FCC-ee

Baseline: at 240 and 365 GeV, collect in total 1.2M ZH events and 0.1M WW → H events per experiment

• Statistics-limited measurements:

- Higgs couplings to fermions & bosons;
 - \rightarrow Model-independent, normalized to e+e- \rightarrow ZH cross-section
 - \rightarrow fixed candle for past (HL-LHC) and future (FCC-hh) studies at hadron colliders (H \rightarrow ZZ)
- Higgs properties: Higgs mass and width, CP violation, $\rm H \rightarrow gg$,

• Close to discovery level:

- Higgs self-coupling via loop diagrams :
 - \rightarrow complementarity to HH production at higher energy machines, like HL-LHC, or later FCC-hh

• Unique possibility:

- Measure Higgs to electron coupling in s-channel production e+e-→H @ Vs = 125 GeV highly demanding on luminosity, monochromatization with 2 or 4 IPs?
 - ightarrow test of first generation Yukawa coupling