

Precision measurements of the Higgs boson mass and width using four-lepton and di-photon final states

Gaetano Αθανάσιος Barone

Brookhaven National Laboratory On behalf of the ATLAS Collaboration

July 2022

Introduction

• Importance of $m_{\rm H}$ and $\Gamma_{\rm H}$ in several aspects of our understanding of fundamental physics.

Power law expansion of the potential

$$V(h) = \frac{1}{4}\lambda h^4 + \lambda v h^3 + \lambda v^2 h^2$$

- Understanding the perturbative expansion of its potential $(\lambda v^2 h^2)$.
- Higgs couplings defined by the value of $m_{H^{-}}$
- Input to precision global fit of the Standard Model.

- ATLAS run I precision on m_H of 0.33%
 - combined measurement from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4 \boldsymbol{\ell}$.

Channel	Mass measurement [GeV]		
$H \to \gamma \gamma$	$125.98 \pm 0.42 \text{ (stat)} \pm 0.28 \text{ (syst)} = 125.98 \pm 0.50$		
$H \!\rightarrow\! ZZ^* \!\rightarrow\! 4\ell$	$124.51 \pm 0.52 \text{ (stat)} \pm 0.06 \text{ (syst)} = 124.51 \pm 0.52$		
Combined	$125.36 \pm 0.37 \text{ (stat)} \pm 0.18 \text{ (syst)} = 125.36 \pm 0.41$		

Higgs width

• Limit Γ_H possibile from the off-shell to on-shell event yield ratio

m₄₁ [GeV]

- ← on-shell event yields ~ $k^{2}_{g,on-shell} / \Gamma_{H}$, while off-shell ~ $k^{2}_{g,off-shell}$
- Observed (expected) upper limit on Γ_H 14.4 (15.2) MeV

and $gg \rightarrow ZZ$.

- $H \rightarrow \gamma \gamma$ updated result at Run II with 36.1 fb⁻¹.
 - Analytical m_{YY} background functions in kinematic and detector related categories.
 - Reduction of uncertainty through categorisation of events as a function of:
 - resolution and signal significance.
 - Systematic uncertainties.
- Expected statistical uncertainty of 0.21 GeV and 0.34 GeV systematic uncertainty

$m_H^{\gamma\gamma} = 124.93 \pm 0.40 \ (\pm 0.21 \text{ stat only}) \text{ GeV}$

Source	Systematic uncertainty on $m_H^{\gamma\gamma}$ [MeV]
EM calorimeter cell non-linearity	± 180
EM calorimeter layer calibration	± 170
Non-ID material	± 120
ID material	± 110
Lateral shower shape	± 110
$Z \rightarrow ee$ calibration	± 80
Conversion reconstruction	± 50
Background model	± 50
Selection of the diphoton production vertex	± 40
Resolution	± 20
Signal model	±20

Phys. Lett. B 784 (2018) 345

Mass measurement

• 4ℓ and $\gamma\gamma$ measurements are combined with ATLAS Run 1 result

Phys. Lett. B 784 (2018) 345

- Stat. only H Total ATLAS Run 1: vs = 7-8 TeV, 25 fb⁻¹, Run 2: vs = 13 TeV, 36.1 fb⁻¹ Total (Stat. only) **Run 1** $H \rightarrow 4l$ 124.51 ± 0.52 (± 0.52) GeV **Run 1** $H \rightarrow \gamma \gamma$ 126.02 ± 0.51 (± 0.43) GeV **Run 2** *H*→4*l* 124.79 ± 0.37 (± 0.36) GeV **Run 2** $H \rightarrow \gamma \gamma$ 124.93 ± 0.40 (± 0.21) GeV Run 1+2 *H*→4*l* 124.71 ± 0.30 (± 0.30) GeV **Run 1+2** $H \rightarrow \gamma \gamma$ 125.32 ± 0.35 (± 0.19) GeV Run 1 Combined 125.38 ± 0.41 (± 0.37) GeV Run 2 Combined 124.86 ± 0.27 (± 0.18) GeV Run 1+2 Combined 124.97 ± 0.24 (± 0.16) GeV ATLAS + CMS Run 1 125.09 ± 0.24 (± 0.21) GeV 123 128 124 125 126 127 m_{μ} [GeV]
- Run 2 precision improved w.r.t Run 1.

 $m_H = 124.86 \pm 0.27 (\pm 0.18 \text{ stat only}) \text{ GeV}$

ATLAS Run I + 2 comparable precision to LHC Run I combination.

 $m_H = 124.97 \pm 0.24 (\pm 0.16 \text{ stat only}) \text{ GeV}$

5

Combination

Ingredients for precision

• In the $H \rightarrow ZZ \rightarrow 4\ell$ the signal is a narrow resonant peak above a background continuum.

 ℓ = electron or muon

• 4 ℓ final state forms 4μ , 4e, $2\mu 2e$, and $2e2\mu$ channels.

$$\delta m_H \simeq \frac{\sigma(m_{4\ell,\gamma\gamma})}{\sqrt{N-N_{\rm b}}}$$

Statistical uncertainty on $m_{\rm H}$ approximated by the uncertainty on the mean of the mass distribution

- (I) Statistical precision precision depends upon:
 - resolution of the reconstructed final state and number of signal events.
- (II) Systematic uncertainty from understanding of detector performance.

Energy and p_T calibration

Resolution in electron and muon reconstruction crucial for m_H uncertainty.

<u>See F. He talk.</u>

- We used well known processes to calibrate the detector response.
 - Resonant process of J/ψ , (Y) and Z,
 - for modelling of calorimeters deposits, alignment precision, etc.

National Laboratory

and second order effects:

... ge dependent sagitta bias, with net effect of worsening resolution

- In-situ correction based on $Z \rightarrow \mu\mu$ data, recovers up to 5% in resolution.
- Momentum scale understood down to the per mille level
 - Precision down to 0.5 per mille for $|\eta| < 1.0$

Detector layer movements biasing the measurement of the bending of the particle

Higher level improvements

- Three-prong approach to reduce uncertainty at analysis level:
 - (i) constraint to m_Z with kinematic fit and second order detector effects.
 - (ii) machine-learning discriminant selecting signal and background events
 - (iii) Per-event resolution likelihood.
 - Machine Learning to target each event's unique characteristics

Neural network output of the event's resolution

ML output for signal and background

New: arXiv:2207.00320

Higher level improvements

- Output used in multidimensional fit, improving with respect to average detector response.
 - Fit dimensions: $m_{4\ell} \ge D_{NN} \ge \sigma_i$
 - Tailored resolution to each event's characteristics.
 - One-sided *p*-value for compatibility between the observed and expected total uncertainties is 0.28.

New: arXiv:2207.00320

$H \rightarrow ZZ \rightarrow 4\ell$ results

- Simultaneous fit for all channels over the multidimensional model
- Channel compatibility within a p-value of 0.8
- Systematic uncertainty of 40 MeV
- Result:

Systematic Uncertainty	Contribution [MeV]
Muon momentum scale Electron energy scale Signal-process theory	$\pm 28 \\ \pm 19 \\ \pm 14$

▶ 26% improved (total) precision with respect to Run I Combination.

 $m_H = 124.99 \pm 0.18(\text{stat.}) \pm 0.04(\text{syst.}) \text{ GeV}$

Full Run-2 results

$H \rightarrow ZZ \rightarrow 4\ell$ results

- Combination with $H \rightarrow ZZ \rightarrow 4\ell$ Run-I measurement.
- New p_T calibration techniques \rightarrow uncorrelated $p_T(\mu)$ systematics between Run1 and Run2
- Total uncertainty of 0.14%
- Systematic uncertainty of 0.02%
 - ▶ 88% improvement w.r.t $m_{\rm H}{}^{H \rightarrow ZZ, {\sf RunI}}$
 - Momentum scale uncertainties reduced by a factor 2.
 - 33% improved precision w.r.t previous $m_{\rm H}^{\rm ATLAS, Run1+2}$
 - Most precise measurement by ATLAS, so far.

Measured $m_{\rm H}$ for all channels and combined.

$$m_H = 124.94 \pm 0.17$$
(stat.) ± 0.03 (syst.) GeV

New: arXiv:2207.00320

Conclusion

• After a decade of cracking the mass problem:

1. Measurement of $m_{\rm H}$ at 1.4 per mille precision level. 2. Measurement of the Higgs width.

- Higgs physics provide an excellent picture for
 - Searches for new phenomena resonant at higher scales, searches for deviations to theory within the scales of the experiment.
 - $m_{\rm H}$ one of the most precise measurements in the LHC scientific program.

• Full set of ATLAS results:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

G. Barone

Additional material

Introduction

• Importance of $m_{\rm H}$ and $\Gamma_{\rm H}$ in several aspects of our understanding of fundamental physics.

Power law expansion of the potential

$$V(h) = \frac{1}{4}\lambda h^4 + \lambda v h^3 + \lambda v^2 h^2$$

- Understanding the perturbative expansion of its potential $(\lambda v^2 h^2)$.
- Higgs couplings defined by the value of $m_{H^{-}}$
- Input to precision global fit of the Standard Model.

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i \bar{\Psi} D \psi \\ &+ D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - V(\Phi) \\ &+ \bar{\Psi}_{L} \hat{Y} \Phi \Psi_{R} + h.c. \end{aligned}$$

Run I status

- ATLAS run I precision on m_H of 0.33%
 - combined measurement from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$.

Channel	Mass measurement [GeV]		
$H \to \gamma \gamma$	$125.98 \pm 0.42 (\text{stat}) \pm 0.28 (\text{syst}) = 125.98 \pm 0.50$		
$H \!\!\rightarrow\! ZZ^* \!\!\rightarrow\! 4\ell$	$124.51 \pm 0.52 \text{ (stat)} \pm 0.06 \text{ (syst)} = 124.51 \pm 0.52$		
Combined	$125.36 \pm 0.37 \text{ (stat)} \pm 0.18 \text{ (syst)} = 125.36 \pm 0.41$		

Both channels dominated by statistical uncertainty

- At Run2 aim in improving significantly the precision:
 - Expect 7 times more candidates, with 139 fb⁻¹ at \sqrt{s} =13 TeV
 - Improve on the detector calibration.

Combination

• 4 ℓ and $\gamma\gamma$ measurements are combined with ATLAS Run 1 result

arXiv:1806.00242

14 ATLAS	-Combined - -Run 1 -	Source	Systematic uncertainty in m_H [MeV]
$12 - H \rightarrow ZZ^* + H \rightarrow \gamma\gamma \text{ Com}$ Run 1: $\sqrt{s} = 7.8 \text{ TeV}, 25 \text{ fb}^{-1}$ Run 2: $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ $8 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - $	hbination -Run 2 ·· Stat. only	Source EM calorimeter response linearity Non-ID material EM calorimeter layer intercalibration $Z \rightarrow ee$ calibration ID material Lateral shower shape Muon momentum scale Conversion reconstruction $H \rightarrow \gamma \gamma$ background modelling $H \rightarrow \gamma \gamma$ vertex reconstruction e/γ energy resolution All other systematic uncertainties	$\begin{array}{c} 60\\ 55\\ 55\\ 45\\ 45\\ 40\\ 20\\ 20\\ 20\\ 20\\ 15\\ 15\\ 10\\ \end{array}$
	<i>т_н</i> [GeV]		

• Run 2 precision improved w.r.t Run 1.

 $m_H = 124.86 \pm 0.27 (\pm 0.18 \text{ stat only}) \text{ GeV}$

• ATLAS Run I + 2 comparable precision to LHC Run I combination.

 $m_H = 124.97 \pm 0.24 (\pm 0.16 \text{ stat only}) \text{ GeV}$

Higgs width

• Study of the the $m_{4\ell}$ spectrum and off-shell H production

- Measured upper limit on width combining 4ℓ and $\ell \overline{\ell} v \overline{v}$
- Limit Γ_H possibile from the off-shell to on-shell event yield ratio R_{gg}
 - on-shell event yields ~ $k^2_{g,on-shell} / \Gamma_H$, while off-shell ~ $k^2_{g,off-shell}$
- Observed (expected) upper limit on Γ_H 14.4 (15.2) MeV

JHEP 04 (2019) 048,

Phys. Lett. B 786 (2018) 223

- $H \rightarrow \gamma \gamma$ updated result at Run II with 36.1 fb⁻¹.
 - Analytical m_{YY} background functions in kinematic and detector related categories.
 - Reduction of uncertainty through categorisation of events as a function of:
 - resolution and signal significance.
 - Systematic uncertainties.
- Expected statistical uncertainty of 0.21 GeV and 0.34 GeV systematic uncertainty

 $m_H^{\gamma\gamma} = 124.93 \pm 0.40 \ (\pm 0.21 \text{ stat only}) \text{ GeV}$

Phys. Lett. B 784 (2018) 345

• Electrons (e).

- Isolated objects clustered from calorimeter energy deposits with associated ID track.
- $E_T > 7 \text{ GeV}, |\eta| < 2.47 \text{ and } |z_0 \sin(\vartheta)| < 0.5 \text{ mm}$
- Muons (µ).
 - Combined track fit of Inner Detector and Muon Spectrometer hits,
 - $p_T > 5$ GeV, $|\eta| < 2.7 |z_0 \sin(\vartheta)| < 0.5$ mm of "loose or medium quality"
 - Isolated objects
- Missing transverse energy ($E_{\rm T}^{\rm miss}$).
 - Inferred from transverse momentum imbalance

- Electrons (e).
 - Isolated objects clustered from calorimeter energy deposits with associated ID track.
 - $E_T > 7 \text{ GeV}, |\eta| < 2.47 \text{ and } |z_0 \sin(\vartheta)| < 0.5 \text{ mm}$
- Muons (µ).
 - Combined track fit of Inner Detector and Muon Spectrometer hits,
 - $p_T > 5 \text{ GeV}, |\eta| < 2.7 |z_0 \sin(\vartheta)| < 0.5 \text{ mm of "loose or medium quality"}$
 - Isolated objects

• Jets (*j*).

- Energy deposit grouping with *infra*-red safe algorithm:
- ▶ $p_{\rm T}$ > 25 GeV and $|\eta|$ < 4.5
 - + Clustering with anti- $k_{\rm T,}$ $R{=}0.4$

• Electrons (e).

- Isolated objects clustered from calorimeter energy deposits with associated ID track.
- $E_{\rm T}$ > 7 GeV, $|\eta|$ < 2.47 and $|z_0 \sin(\vartheta)|$ < 0.5 mm
- Muons (µ).
 - Combined track fit of Inner Detector and Muon Spectrometer hits,
 - *p*_T > 5 GeV, |η| < 2.7 |z₀ sin(ϑ)| < 0.5 mm of "loose or medium quality"
 - Isolated objects
- Photons (γ).
 - Clustering of calorimeter energy deposits.
 - Identified with rectangular cuts on shower shapes.

• Electrons (e).

- Isolated objects clustered from calorimeter energy deposits with associated ID track.
- $E_T > 7 \text{ GeV}, |\eta| < 2.47 \text{ and } |z_0 \sin(\vartheta)| < 0.5 \text{ mm}$
- Muons (µ).
 - Combined track fit of Inner Detector and Muon Spectrometer hits,
 - *p*_T > 5 GeV, |η| < 2.7 |z₀ sin(ϑ)| < 0.5 mm of "loose or medium quality"
 - Isolated objects

• Jets (*j*).

ooknaven

National Laboratory

- Energy deposit grouping with *infra*-red safe algorithm:
- $p_{\rm T} > 25 \text{ GeV and } |\eta| < 4.5$
 - Clustering with anti- $k_{\rm T,} R = 0.4$

Reconstruction and selection

- Diphoton event selection
 - At least two photon with $E_T > 25 \text{ GeV}$
 - Highest E_T pair forms candidate.
 - Vertex identification with Neural Network
 - Vertex within 0.3 mm for 79% of ggH events.

- Background estimation
- Entirely estimated from data
- Prompt photons: maximum likelihood fit to m_{YY} spectrum
- Jets misidentified as photons: from control sample

$E_{T}(e/\gamma)$ resolution

- Mass measurement
- Good energy calibration necessary for increased precision on m_H
 - Two step approach: i) material energy loss and ii) global calorimetric scale from $Z \rightarrow ee$ data
- Total scale uncertainty of at 40 GeV at the per-mille level.

Muon resolu

- Correction for
 - Charge depend ... oras, with net effect of worsening resolution
 - In-situ correction based on $Z \rightarrow \mu \mu$ data, recovers up to 5% in resolution.

G. Barone

Mass Measurement

 $p_T = p_T (1 + q p_T o_{sagitta})$