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Contents
→ Goal:  Summarise new/uncommon analysis techniques used by ATLAS data analyses

→ Focus on the details of a few key Higgs measurements:

H→ γγ:
→ Multi-MVA model fit D-optimality

H→ZZ→llll:
→ Recurrent neural network quantile 

         regress of m4l mass resolution

VBF, H→bb:
→ Mass independent event classification
→ Z(bb)+jets b-jet object embedding 

VBF+VH, H→ ττ:  
→ Z(ττ)+jets kinematic object embedding

VH, H→bb/cc:
→ b-/c-jet truth tagging 
→ Multi-dimensional parameterisation

             of MC theory uncertainties

H→llγ  – (Backup only)Backup only)
→ Near-by electron identification

Machine Learning 
- Classification

Machine Learning 
- Error Estimation

Machine Learning 
&

Object Embedding

Object Embedding

Likelihood Re-weighting 
- Statistical Precision 

Enhancement

Object Reconstruction

Source: HIGG-2021-23

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2021-23/


Machine Learning

H(γγ) STXS Multi-class BDT
H(ZZ*) Quantile Regression Neural Network
VBF H(bb) Adversarial Neural Network
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H(γγ) – Multi-Class D-optimality
→ H(γγ) valuable for measuring Higgs properties with precision:

→ New publication addresses Stage 1.2 Simplified Template 
Cross-section Measurement (STXS)

→ ATLAS-CONF-2020-026 superceded by HIGG-2020-16
→ 44 STXS regions in total
→ 28 merged STXS regions used in final fit

→ Multi-class BDT used classify events into STXS regions yi :
→ Trained using categorical cross-entropy:

→      is defined as the softmax converted score of the BDT (zi): 

L=∑i

N=44

yi log( ŷi)

ŷi

ŷi=
e zi

∑ j
e z j

HIGG-2020-16

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-026/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-16/
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→ Goal: Single scalar metric for fitting, not 44 class 
                labels

→ Ideally: Metric to be optimised should be:
→ Sensitivity aware due to statistical errors
→ Reduce STXS bin correlations

→ D-optimality: Determinant of the covariance 
                               matrix (CXX):

→ Transform:  Transform output of BDT (zi) to a new  
                            more expressive discriminant and take
                            maximum:

→ Optimisation:  The transformation weights w
i
 

determined by iteratively minimising D
opt

 after 
successive 1-bin Asimov fits of STXS binnings

Dopt=
1
2
⋅log

|C exp+Ctheo .|

|C exp|

max ( ẑ i=wi z i)

H(γγ) – Multi-Class D-optimality HIGG-2020-16

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-16/
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→ Outcome:  Maximises sensitivity by 
accounting for MC statistical error, and 
reduces STXS correlation:

H(γγ) – Multi-Class D-optimality HIGG-2020-16

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-16/


06/07/22 Stephen Jiggins 7

H→ZZ*→ llll – Mass resolution uncertainty
→ New Higgs mass (mH) measurement using H→ ZZ*→l+l-l+l- 

→ Unbinned maximum likelihood fit to data

→ Signal probability density function (pdf) conditional on:
1.  mH   = Higgs mass
2..  DNN = Dense Neural Network classifier
3.  σi     = Event level m4l resolution  

→ P
S
 constructed assuming a Double Sided Crystal Ball (DCB)

→ Propagating ±1σ (68% quantile) lepton reconstruction
      uncertainties to m4l

 does not correspond to 68% quantile of 
      DCB

HIGG-2020-07

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-07/
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H→ZZ*→ llll – Mass resolution uncertainty
→ Recurent Neural Network + MLP used to estimate the 
per-event quantile of the difference between truth and 
reconstructed 4-lepton mass: 

→ Loss function is the square difference between true and 
predicted m4l quantile:

HIGG-2020-07

|m4l
constrained – m4l

truth,born|
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.

.

MLP 2MLP 1

RNN

Lepton 4-vectors

M4l,    pT
4l

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-07/
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H→ZZ*→ llll – Mass resolution uncertainty
→ Recurent Neural Network + MLP used to estimate the 
per-event quantile of the difference between truth and 
reconstructed 4-lepton mass: 

→ Loss function is the square difference between true and 
predicted m4l quantile:

HIGG-2020-07
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-07/
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VBF H(bb)
→ Search for H(bb) via vector boson fusion:

Signal
Non-resonant bkg

(QCD multijet)
Resonant bkg
(Z(bb)+jets)

HIGG-2019-04

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2019-04/
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VBF H(bb) – Adversarial Neural Network
→ Search for H(bb) via vector boson fusion:

Signal
Non-resonant bkg

(QCD multijet)
Resonant bkg
(Z(bb)+jets)

→ Separating background from signal achieved via 
an Adversarial Neural Network: 

→ Adversary penalises the total loss to ensure 
classification without sculpting mbb of background or 
signal

→ Classifier attempts to 
determine signal vs background

→ Adversary attempts to 
predict the mbb bin of each event:

Without adversary

With Adversary

Bkg CR w/ adv.

HIGG-2019-04

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2019-04/


Object Embedding

VBF (Hbb) b-jet object embedding

H(ττ) τ-decay kinematic embedding
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VBF H(bb) – Z(bb) object embedding
→ Constraining resonant Z(bb)+jets difficult in fit:

→ Z(bb)+jets & QCD multijet catgorised 
      as bkg by ANN 
→ Z(bb)+jets poorly modelled by MC in 
      analysis phase space

g

b

g

b

Z

→ Solution:  Use Z(μμ)+jet events from data & 
replace μ’s s by simulated b-quark pairs

μ2μ1

Jet 1
Jet 2 pμ1

pμ2

Jet 1
Jet 2

Pμ1 = Pb1

Pμ2 = Pb2

Step 1: Select data events with a 
Z(μμ) around the pole mass of the 
Z-boson

Step 2: Simulate di-b-quark pairs 
using detector simulation with 
same muon 4-vector

Step 3: Replace the muons with 
the simulated jets

HIGG-2019-04

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2019-04/
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VBF H(bb) – Z(bb) object embedding
→ How this look? How well does it perform?

μ2μ1

Jet 1
Jet 2

Jet 1
Jet 2

Pμ1 = Pb1

Pμ2 = Pb2

Embed MC 
simulated b-jets

Vaidated 
using VBF 

H(μμ) 

in which the 
muons are 

switched for 
b-jets

HIGG-2019-04

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2019-04/


06/07/22 Stephen Jiggins 15

VH+VBF H(ττ) – Z(ττ)+jets background 
→ Measurement of H(ττ) using all 4 production modes:

 

→ Z(ττ)+jets forms 79% of backround processes:
 

g

τ

g

τ

Z

→ Most extreme case 
it accounts for 90%

ttH:     σ(pp→H+X )

ggF:     σ(pp→H+X ) VBF:     σ(pp→H+X )

VH:     σ(pp→H+X )

HIGG-2019-09

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2019-09/
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VH+VBF H(ττ) – Z(ττ)+jets background 
→ Z(ττ)+jets modelled using kinematic embedding:

1.  Select Z(ee/μμ)+jets events from data
2.  Correct for e-/μ-reconstruction/trigger efficiencies
3.  Apply a scale to the e/μ four vectors to mimic the 
     energy lost due to invisible τ-decay components
4.  Apply an event weight to mimic the τ-reco/trigger
     efficiencies for the kinematic topology of the event
     

 

μ2
μ1

Jet 2

Jet 1

τ2

τ1

Jet 2

Jet 1

W±

νν

W±

→ Scale the 4-vector of μ by the a 
scale factor to transform it to a 

realistic τ 4-vector due to energy loss 
from neutrinos

HIGG-2019-09

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2019-09/


Likelihood Re-weighting

VH(cc) Jet Flavour Truth Tagging

VH(bb) Multi-Dimensional MC Uncert. Parameterisation
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V(ll,lν,νν)H(cc) – Truth Tagging
→ Search for H(cc) via associated vector boson production:

→ Signal strength extracted via profile likelihood fit using:
- mCC :  Invariant mass of di-jet system

c

c

→ Efficiency of 2 c-jets the product of single jet 
tagging efficiencies εf

i:

≈ → Lot of Monte Carlo is lost as 
a result of the tagging 

efficiencies!

27%, f = c-jet  →  x2 c-jets ~ 7%

HIGG-2021-12

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2021-12/
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V(ll,lν,νν)H(cc) – Truth Tagging
→ Search for H(cc) via associated vector boson production:

→ Signal strength extracted via profile likelihood fit using:
- mCC :  Invariant mass of di-jet system

c

c

→ Efficiency of 2 c-jets the product of single jet 
tagging efficiencies εf

i:

→ Solution:  Select all events, but weight event 
based on probability of tagging m-jets out of n 
total jets:

≈ 

→ Truth tagging improves limit 
on μVH(cc) by ~ 10%

27%, f = c-jet  →  x2 c-jets ~ 7%

HIGG-2021-12

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2021-12/
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VH(bb) – MC Systematic Uncertainties
→ MC uncertainties from MC model changes (e.g. 
matrix element generator models) induce kinematic 
variations:

∂σalt

d x⃗
=f ( x⃗)⋅

∂σnom

d x⃗

x

∂σ
d x⃗ → Map nominal to look-

like an alternative MC 
prediction:

HIGG-2018-51

HIGG-2018-04

VH(bb) Observation Paper:

→ Analysis feature space is 13-dimensional

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-04/
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VH(bb) – MC Systematic Uncertainties
→ MC uncertainties from MC model changes (e.g. 
matrix element generator models) induce kinematic 
variations:

→ f(Backup only)x) = a surjective map built from a BDT 
that simultaneous maps all the features of 
nominal (xnom)  to the alternative MC (xalt)

∂σalt

d x⃗
=f ( x⃗)⋅

∂σnom

d x⃗

f ( x⃗ )

x

∂σ
d x⃗ → Map nominal to look-

like an alternative MC 
prediction:

⊗ f(Backup only)x)

⊗ f(Backup only)x) ⊗ f(Backup only)x)

HIGG-2018-51

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/
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Conclusion
→ Pushing scope of Higgs analyses key to 
understanding the SM and potentially disovering 
BSM physics 

→ Detector development life cycles are often 10-
     20 years long

→ Development life cycles of new machine 
learning, statistical inference models, and 
accelerator techniques often 2-3 years

→ Squeezing every ounce of information out of 
the already collected data is unmined gold...

→ For more information about the relevant 
      measurements see:

● H(γγ):  D.Mungo  (Thurs. 09:00)
● H(ZZ):  G.Barone (Thurs. 11:45)
● VH(bb/cc):   G.Di Gregorio (Thurs. 09:15)
● VBF H(bb): G.Di Gregorio (Thurs. 09:15)
● H(ττ): G.Di Gregorio (Thurs. 09:15)

O
ption al

N
ecessi ty

Large data/MC 
data volumes 
pose problem 

many future HL-
LHC analyses

Source: CERN-LHCC-2022-005

O
ption al

Source: A. Radovic et al., Nature 560(2018) no. 7716,41

Machine Learning 
algorithms have 
helped push the 

discovery potential 
of analyses

https://agenda.infn.it/event/28874/contributions/169483/
https://agenda.infn.it/event/28874/contributions/169496/
https://agenda.infn.it/event/28874/contributions/169502/
https://agenda.infn.it/event/28874/contributions/169502/
https://agenda.infn.it/event/28874/contributions/169502/
https://cds.cern.ch/record/2802918?ln=en
https://inspirehep.net/literature/1684748
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Backup
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Context
→ Goal:  Summarise new/uncommon analysis  
        techniques used by ATLAS data analyses
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Context
→ Goal:  Summarise new/uncommon analysis  
        techniques used by ATLAS data analyses

→ Data Analysis 101:  At its core ATLAS data 
        analyses are counting experiments interpreted 
        predominantly in a frequentist likelihood paradigm:

x

dσ
dx

.∏
θ

N θ

f θ(
~
θ∣θ)L(n∣⃗μ , θ⃗)=∏

b :bins

P (nb∣νb(μ⃗ , θ⃗))

.∏
b :bins

P(νb(μ⃗ , θ⃗)∣λb , τb)

Observed data 
count nb

Expected count:
 νb(μ,θ))
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Context
→ Goal:  Summarise new/uncommon analysis  
        techniques used by ATLAS data analyses

→ Data Analysis 101:  At its core ATLAS data 
        analyses are counting experiments interpreted 
        predominantly in a frequentist likelihood paradigm:

→ Why todays talk?  O
ption al

N
ecessi ty

Source: A. Radovic et al., Nature 560(2018) no. 7716,41

Machine Learning 
algorithms have 
helped push the 

discovery potential 
of analyses

x

dσ
dx

.∏
θ

N θ

f θ(
~
θ∣θ)L(n∣⃗μ , θ⃗)=∏

b :bins

P (nb∣νb(μ⃗ , θ⃗))

.∏
b :bins

P(νb(μ⃗ , θ⃗)∣λb , τb)

++

Observed data 
count nb

Expected count:
 νb(μ,θ))

https://inspirehep.net/literature/1684748
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Context
→ Goal:  Summarise new/uncommon analysis  
        techniques used by ATLAS data analyses

→ Data Analysis 101:  At its core ATLAS data 
        analyses are counting experiments interpreted 
        predominantly in a frequentist likelihood paradigm:

→ Why todays talk?  O
ption al

N
ecessi ty

Source: HIGG-2018-51

ML models, specialised 
jet tagging, opitimised 
mass resolution fitting 
etc… needed to make 
specific Higgs decay 

modes viable

x

dσ
dx

.∏
θ

N θ

f θ(
~
θ∣θ)L(n∣⃗μ , θ⃗)=∏

b :bins

P (nb∣νb(μ⃗ , θ⃗))

.∏
b :bins

P(νb(μ⃗ , θ⃗)∣λb , τb)

++ -

-

Observed data 
count nb  νb(μ,θ))

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2018-51/
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v
→ Goal:  Summarise new/uncommon analysis  
        techniques used by ATLAS data analyses

→ Data Analysis 101:  At its core ATLAS data 
        analyses are counting experiments interpreted 
        predominantly in a frequentist likelihood paradigm:

→ Why todays talk?  O
ption al

N
ecessi ty

Numerical techniques to address 
data/MC data volumes that pose 

problem for some current and 
many future HL-LHC analyses

Source: CERN-LHCC-2022-005

x

dσ
dx

.∏
θ

N θ

f θ(
~
θ∣θ)L(n∣⃗μ , θ⃗)=∏

b :bins

P (nb∣νb(μ⃗ , θ⃗))

.∏
b :bins

P(νb(μ⃗ , θ⃗)∣λb , τb)
-

+ ?

Observed data 
count nb

Expected count:
 νb(μ,θ))

https://cds.cern.ch/record/2802918?ln=en


H(γγ)
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H(γγ) – Multi-Class D-optimality
→ Goal: Single metric for optimisation that:

→ Sensitivity aware due to statistical errors
→ Reduces STXS bin correlations

→ D-optimality: Determinant of the covariance matrix (CXX):

→ Algorithm:  Conduct a 1-bin counting experiment by 
assigning events to pseudo-STXS bins according based on the 
maximum multi-class score:

Dopt=
1
2
⋅log

|C exp+Ctheo .|

|C exp|

max ( ẑ i=wi zi)

Step 1: Assign event to a STXS category

i

ẑi

Step 2: Perform 1-bin Asimov fit obtaining a 
covariance matrix

...

i

category

Event 1 Event n

Step 3: Minimise covariance matrix by 
changing BDT transformation weights:

wi

1

0.2

0.11

0.01

0.08

0.87

1

0.3

0.21

0.5

0.16

1

0.34

0.2

0.29

1

0.4

0.36

1

0.24 1

ẑi



H(ZZ)→4l
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H→ZZ*→ llll – Mass resolution uncertainty
→ New Higgs mass (mH) measurement using H→ ZZ*→l+l-l+l- 

→ Unbinned maximum likelihood fit to data

→ Signal probability density function (pdf) conditional on:
1.  mH   = Higgs mass
2..  DNN = Dense Neural Network classifier
3.  σi     = Event level m4l resolution  

HIGG-2020-07

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2020-07/


VH(bb/cc)
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VH(bb) – MC Systematic Uncertainties
→ Signal strength extracted via profile likelihood fit using a Boosted Decision Tree multi-variate proxy:

+ 
9-11 extra kinematic 

observables

→ Uncertainties on the MC expectation included as 
nuisance parameters in the profile likelihood fit paradigm:

.∏
θ

N θ

f θ(
~
θ∣θ)L (n∣⃗μ , θ⃗)= ∏

b :bins

P(nb∣νb(μ⃗ , θ⃗))

.∏
b :bins

P(νb(μ⃗ , θ⃗ )∣λb , τb)

HIGG-2018-51



H(ll)
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H(ll)+γ – Near-by electron identification
→ Measurement of H(ll)+γ using ggF/VBF/VH 
production modes:

→ Search in m
ll
 < 30GeV to mitigate resonant 

     backgrounds
→ Dielectron system prone to being collinear
→ Resolution of ECAL means two electrons merge at 
      calorimeter cell level

→ Electron inner detector tracks 
separable
→ Associated calo. cells merge

HIGG-2018-43 
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H(ll)+γ – Near-by electron identification

→ Dedicated trigger, identification, and reconstruction algorithm 
for ee-merged signatures:

● If conversion vertex match, radius < 20mm
● Multivariate discriminant using:

● Shower Shape
● TRT signals 
● Cluster/ID track kinematics

● Calibrated using photons with conversion radius of 30 mm 

→ ee-merged extends reach of analysis to low mll 
     and thus highly boosted topologies 

+

HIGG-2018-43 
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H(ll)+γ – Near-by electron identification

→ Dedicated trigger, identification, and reconstruction algorithm 
for ee-merged signatures:

● If conversion vertex match, radius < 20mm
● Multivariate discriminant using:

● Shower Shape
● TRT signals 
● Cluster/ID track kinematics

● Calibrated using photons with conversion radius of 30 mm 

→ ee-merged extends reach of analysis to low mll 
     and thus highly boosted topologies

→ Observed(expected) significance of H → llγ:
 3.2(2.1)σ for mH = 125.09 GeV

HIGG-2018-43 
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