

<u>Development of novel experimental</u> <u>techniques to improve the understanding of</u> <u>the Higgs sector by the ATLAS experiment</u>

On behalf of the ATLAS Collaboration

Stephen Jiggins 07/07/22

Contents

 \rightarrow Goal: Summarise new/uncommon analysis techniques used by ATLAS data analyses

 \rightarrow **Focus** on the details of a few key Higgs measurements:

Machine Learning

HIGG-2020-16

$H(\gamma\gamma)$ – Multi-Class D-optimality

 \rightarrow H(yy) valuable for measuring Higgs properties with precision:

→ New publication addresses Stage 1.2 **Simplified Template Cross-section Measurement** (STXS)

- \rightarrow ATLAS-CONF-2020-026 superceded by HIGG-2020-16
- \rightarrow 44 STXS regions in total
- \rightarrow 28 merged STXS regions used in final fit

 \rightarrow **Multi-class** BDT used classify events into STXS regions y_i:

 \rightarrow Trained using categorical cross-entropy:

$$L = \sum_{i}^{N=44} y_i \log(\hat{y}_i)$$

 $\rightarrow \hat{y}_i$ is defined as the softmax converted score of the BDT (z_i):

$$\hat{y}_i = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

HIGG-2020-16

$H(\gamma\gamma)$ – Multi-Class D-optimality

- \rightarrow Goal: Single scalar metric for fitting, not 44 class labels
- \rightarrow **Ideally:** Metric to be optimised should be:
 - \rightarrow Sensitivity aware due to statistical errors
 - \rightarrow Reduce STXS bin correlations
- \rightarrow **D-optimality**: Determinant of the covariance matrix (C_{xx}):

$$D_{opt} = \frac{1}{2} \cdot \log \frac{|C_{exp} + C_{theo.}|}{|C_{exp}|}$$

→ **Transform:** Transform output of BDT (z_i) to a new more expressive discriminant and take maximum: $max(\hat{z}_i = w_i z_i)$

 \rightarrow **Optimisation:** The transformation weights w_i determined by iteratively minimising D_{opt} after successive 1-bin Asimov fits of STXS binnings

HIGG-2020-16

$H(\gamma\gamma)$ – Multi-Class D-optimality

$H \rightarrow ZZ^* \rightarrow IIII - Mass resolution uncertainty HIC$

 $P_s(m_{4\ell}, D, \sigma | m_H)$

HIGG-2020-07

 \rightarrow Unbinned maximum likelihood fit to data

$$(m_H | \mathbf{x}) = \mathcal{L}(m_H | m_{4\ell}, D, \sigma)$$
$$= \prod_i P(m_{4\ell}^i, D^i, \sigma^i | m_H)$$

- → Signal *probability density function* (pdf) conditional on:
 - 1. **m**_H = Higgs mass

L

- 2. \mathbf{D}_{NN} = Dense Neural Network classifier
- 3. σ_i = Event level $m_{4/}$ resolution

- \rightarrow P_s constructed assuming a *Double Sided Crystal Ball* (DCB)
- \rightarrow Propagating ±1 σ (68% quantile) lepton reconstruction uncertainties to m_{4l} does not correspond to 68% quantile of DCB

$H \rightarrow ZZ^* \rightarrow IIII - Mass resolution uncertainty HIGG-2020-07$

06/07/22

Stephen Jiggins

$H \rightarrow ZZ^* \rightarrow IIII - Mass resolution uncertainty HIGG-2020-07$

→ **Recurent Neural Network** + MLP used to estimate the **per-event** quantile of the difference between **truth** and **reconstructed** 4-lepton mass:

 \rightarrow Loss function is the square difference between true and predicted m₄₁ quantile:

$$\sum_{N} \max(q \times (\text{true-predicted}), (1-q) \times (\text{true-predicted})) + \frac{1}{w} \sum_{N} \left(\frac{\text{predicted}}{\sigma_{4\ell}^{\text{constrained}}} - -\mu \right)^2$$

06/07/22

VBF H(bb)

 \rightarrow Search for H(bb) via *vector boson fusion*:

Stephen Jiggins

VBF H(bb) – Adversarial Neural Network

06/07/22

Object Embedding

VBF (Hbb) b-jet object embedding

H(ττ) τ-decay kinematic embedding

VBF H(bb) – Z(bb) object embedding

\rightarrow **Constraining** resonant Z(bb)+jets **difficult** in fit:

HIGG-2019-04

VBF H(bb) – Z(bb) object embedding

 \rightarrow How this look? How well does it perform?

VH+VBF H(\tau\tau) – Z($\tau\tau$)+jets background

\rightarrow Measurement of H($\tau\tau$) using all 4 production modes:

80 90 100

70

HIGG-2019-09

 $Z \rightarrow \parallel$

 $Z \rightarrow \tau \tau$

 $H \rightarrow \tau \tau$

VH+VBF H(\tau\tau) – Z($\tau\tau$)+jets background

HIGG-2019-09

\rightarrow Z($\tau\tau$)+jets modelled using **kinematic** embedding:

- 1. Select $Z(ee/\mu\mu)$ +jets events from data
- 2. Correct for $e^{-/\mu}$ -reconstruction/trigger efficiencies
- 3. Apply a scale to the e/μ four vectors to *mimic* the energy lost due to invisible τ -decay components
- 4. Apply an event weight to *mimic* the τ -reco/trigger efficiencies for the kinematic topology of the event

Likelihood Re-weighting

VH(cc) Jet Flavour Truth Tagging

VH(bb) Multi-Dimensional MC Uncert. Parameterisation

V(II,Iv,vv)H(cc) – Truth Tagging

HIGG-2021-12

V(II,Iv,vv)H(cc) – Truth Tagging

HIGG-2021-12

 \rightarrow Search for H(cc) via *associated vector boson* production:

 \rightarrow Signal strength extracted via profile likelihood fit using: - m_{cc} : Invariant mass of di-jet system

 \rightarrow Efficiency of 2 c-jets the product of single jet tagging efficiencies ε^{f} :

$$\varepsilon\left(\binom{m}{n}_{i}, x, f\right) = \prod_{j \in n} \epsilon_{x}^{f}(j) \approx 27\%, f = c \text{-jet} \longrightarrow x2 \text{ c-jets} \sim 7\%$$

→ **Solution:** Select all events, but weight event based on probability of tagging *m*-jets out of *n* total jets: p(m) = p(m) + p(m) + p(m)

$$P_i(x) = \frac{\varepsilon(\binom{m}{n}_i, x) \cdot \varepsilon_{in}(\binom{m}{n}_i, x)}{w_{TT}}$$

$$w_{TT}(x) = \sum_{i}^{|\binom{m}{n}|} \varepsilon \left(\binom{m}{n}_{i}, x \right) \cdot \varepsilon_{in} \left(\overline{\binom{m}{n}_{i}}, x \right)$$

VH(bb) – MC Systematic Uncertainties

HIGG-2018-51

VH(bb) – MC Systematic Uncertainties

HIGG-2018-51

Conclusion

- \rightarrow Pushing scope of Higgs analyses key to understanding the SM and potentially disovering BSM physics
- → Detector development life cycles are often 10-20 years long
- \rightarrow Development life cycles of new machine learning, statistical inference models, and accelerator techniques often **2-3 years**
- \rightarrow Squeezing every ounce of information out of the already collected data is unmined gold...
- → For more information about the relevant measurements see:
 - **H**(*yy*): D.Mungo (Thurs. 09:00)
 - **H(ZZ):** G.Barone (Thurs. 11:45)
 - VH(bb/cc): G.Di Gregorio (Thurs. 09:15)
 - VBF H(bb): G.Di Gregorio (Thurs. 09:15)
 - **H**(**ττ**): G.Di Gregorio (Thurs. 09:15)

Analysis	Yearsof data collection	Sensitivity without machine learning	Sensitivity with machine learning	Ratio of P values	Additional data required
CMS^{24} $H \rightarrow \gamma\gamma$	2011-2012 2	P = 0.014	2.7 σ , P = 0.0035	4.0	51%
$ATLAS^{43}$ $H \rightarrow \tau^+ \tau^-$	2011-2012 2	P = 0.0062	3.4σ , P = 0.00034	18	85%
ATLAS ⁹⁹ VH → bb	2011-2012 1	$9\sigma, P = 0.029$	$2.5\sigma, P = 0.0062$	4.7	73%
$ATLAS^{41}$ VH $\rightarrow bb$	2015-2016 2	P = 0.0026	3.0σ , P = 0.00135	1.9	15%
CMS ¹⁰⁰ VH→ bb	2011-2012 1	P = 0.081	$2.1\sigma, P = 0.018$	4.5	125%

Source: A. Radovic et al., Nature 560(2018) no. 7716,41

Machine Learning

algorithms have helped push the

discovery potential of analyses

Backup

 \rightarrow Goal: Summarise new/uncommon analysis techniques used by ATLAS data analyses

- → **Goal:** Summarise new/uncommon analysis techniques used by ATLAS data analyses
- → Data Analysis 101: At its core ATLAS data analyses are *counting* experiments interpreted predominantly in a *frequentist* likelihood paradigm:

Expected count:

Χ

 $v_{b}(\mu,\theta)$

- → **Goal:** Summarise new/uncommon analysis techniques used by ATLAS data analyses
- → Data Analysis 101: At its core ATLAS data analyses are *counting* experiments interpreted predominantly in a *frequentist* likelihood paradigm:

$$L(n|\vec{\mu},\vec{\theta}) = \prod_{b:bins} P(\stackrel{+}{n_b}|\stackrel{+}{\nu_b(\vec{\mu},\vec{\theta})}) \cdot \prod_{\theta}^{N_{\theta}} f_{\theta}(\widetilde{\theta}|\theta)$$
$$\cdot \prod_{b:bins} P(\nu_b(\vec{\mu},\vec{\theta})|\lambda_b,\tau_b)$$
$$\frac{d\sigma}{dx}$$
Observed data

 \rightarrow Why todays talk?

Analysis	Yearsof data collection	Sensitivity without machine learning	Sensitivity with machine learning	Ratio of <i>P</i> values	Additional data required
CMS ²⁴	2011-2012 2	2.2σ,	2.7σ,	4.0	51%
$H \rightarrow \gamma \gamma$		P = 0.014	P = 0.0035		
ATLAS43	2011-2012 2	2.5σ,	3.4 <i>σ</i> ,	18	85%
$H \rightarrow \tau^+ \tau^-$		P = 0.0062	P = 0.00034		
ATLAS ⁹⁹	2011-2012	1.9σ,	2.5σ,	4.7	73%
$VH \rightarrow bb$		P = 0.029	P = 0.0062		
ATLAS ⁴¹	2015-2016 2	2.8σ,	3.0 <i>σ</i> ,	1.9	15%
$VH \rightarrow bb$		P = 0.0026	P = 0.00135		
CMS100	2011-2012	1.4σ,	2.1 <i>σ</i> ,	4.5	125%
$VH \rightarrow bb$		P = 0.081	P = 0.018		

Source: A. Radovic et al., Nature 560(2018) no. 7716,41

Machine Learning algorithms have helped push the discovery potential of analyses

count n

- → **Goal:** Summarise new/uncommon analysis techniques used by ATLAS data analyses
- → Data Analysis 101: At its core ATLAS data analyses are *counting* experiments interpreted predominantly in a *frequentist* likelihood paradigm:

\rightarrow Why todays talk?

ML models, specialised jet tagging, opitimised mass resolution fitting etc... needed to make specific Higgs decay modes viable

Necessity

tiona

tio

 \rightarrow Why todays talk?

Run 4 (u=88-140)

Run 5 (u=165-200)

Year

Numerical techniques to address

data/MC data volumes that pose

problem for some current and

many future HL-LHC analyses

\rightarrow **Goal**: Summarise new/uncommon analysis

06/07/22

X

28

$H(\gamma\gamma)$ – Multi-Class D-optimality

 \rightarrow **Goal:** Single metric for optimisation that:

- \rightarrow Sensitivity aware due to statistical errors
- \rightarrow Reduces STXS bin correlations

 \rightarrow **D-optimality:** Determinant of the covariance matrix (C_{xx}):

$$D_{opt} = \frac{1}{2} \cdot \log \frac{|C_{exp} + C_{theo.}|}{|C_{exp}|}$$

 \rightarrow Algorithm: Conduct a 1-bin counting experiment by assigning events to pseudo-STXS bins according based on the maximum multi-class score:

Step 1: Assign event to a STXS category

covariance matrix

$H \rightarrow ZZ^* \rightarrow IIII - Mass resolution uncertainty HIGG-2020-07$

32

Data

Signal

Background

150

Data

Signal

Background

150

 $m_{4|}$ [GeV]

160

140

140

160

VH(bb) – MC Systematic Uncertainties

HIGG-2018-51

→ Signal strength extracted via profile likelihood fit using a **Boosted Decision Tree multi-variate proxy**:

$H(II)+\gamma$ – Near-by electron identification

HIGG-2018-43

- \rightarrow Search in m_{ll} < 30GeV to mitigate resonant backgrounds
 - \rightarrow Dielectron system prone to being collinear
 - → Resolution of ECAL means two electrons *merge* at calorimeter cell level

 \rightarrow Electron inner detector tracks separable

 \rightarrow Associated calo. cells **merge** ₃₆

06/07/22

Stephen Jiggins

$H(II)+\gamma$ – Near-by electron identification

 \rightarrow Dedicated trigger, identification, and reconstruction algorithm for *ee-merged* signatures:

- If conversion vertex match, radius < 20mm
- Multivariate discriminant using:
 - Shower Shape
 - TRT signals
 - Cluster/ID track kinematics
- Calibrated using photons with conversion radius of 30 mm
- \rightarrow ee-merged extends reach of analysis to low $m_{_{\rm II}}$ and thus highly boosted topologies

$H(II)+\gamma$ – Near-by electron identification

\rightarrow Dedicated trigger, identification, and reconstruction algorithm for *ee-merged* signatures:

- If conversion vertex match, radius < 20mm
- Multivariate discriminant using:
 - Shower Shape
 - TRT signals
 - Cluster/ID track kinematics
- Calibrated using photons with conversion radius of 30 mm

```
\rightarrow ee-merged extends reach of analysis to low m<sub>II</sub> and thus highly boosted topologies
```

 \rightarrow Observed(expected) significance of H \rightarrow *ll* γ : **3.2(2.1)** σ for m_H = **125.09 GeV**

