

Measurements of the CP structure of Higgs-boson couplings with the ATLAS detector

Max Goblirsch (Brandeis), on behalf of the ATLAS Collaboration

July 7th, 2022

Brandeis University

Introduction – CP violation in the Higgs sector

Run 1 data identified H as a CP-even scalar

• Still room for CP-odd **admixtures** in the coupling behaviour – potential for **CP violation**

How to look for signs of CP violation in Higgs couplings?

- Modified rates not immediately distinguishable from CP-even BSM
- Characteristic: Interference effects on shapes of CP-odd observables

 $\sigma \sim |M_{SM} + M_{CP-odd}|^2$ $= M_{SM}^2 + M_{CP-odd}^2 + 2\mathcal{R}e(M_{SM}^*M_{CP-odd})$ CP-even. Affects rates CP-odd. Vanishes for CPeven observables

→ Can extract **limits** from rate measurements, but dedicated CPV searches typically use **shape information**

This talk: Selection of latest ATLAS results covering both fermion and boson couplings

ATLAS-CONF-2022-032

Hττ coupling

Target observable: Signed **Acoplanarity angle** between τ decay planes

- \rightarrow Exploit spin correlations
- \rightarrow CP mixing angle directly visible as phase-shift

Challenge: Reconstruct angle using visible τ decay products

- Exploit track impact parameters and neutral pions $(\pi^0 \rightarrow \gamma \gamma)$
- Relies on excellent performance of **particle flow** based τ classification

Higgs-boson CP at ATLAS

ATLAS-CONF-2022-032

Hττ coupling

Use ggF (boosted) and VBF events

- Classify events by purity and **CP sensitivity** driven by decay mode and angle resolution
- Use control regions to normalise dominant $Z \rightarrow \tau \tau$ background
- Floating signal normalisation agnostic to pure rate effects
- In-situ calibration of π^0 energy and angular resolutions using $Z \rightarrow \tau \tau$ events

Sensitivity achieved by **combination** of all event types and categories

Decay channel	Decay mode combination	Method	Fraction in all τ lepton pair decays
	ℓ-1p0n	IP	8.1%
$ au_{ m lep} au_{ m had}$	ℓ-1p1n	$IP-\rho$	18.3%
	ℓ-1pXn	$IP-\rho$	7.6%
	ℓ-3p0n	$\text{IP-}a_1$	6.9%
Thad Thad	1p0n-1p0n	IP	1.3%
	1p0n-1p1n	$IP-\rho$	6.0%
	1p1n-1p1n	ρ	6.7%
	1p0n-1pXn	$IP-\rho$	2.5%
	1p1n-1pXn	ρ	5.6%
	1p1n-3p0n	ρ - a_1	5.1%

Results:

- Disfavour pure CP-odd at 3.4σ
- Still some space for CP-violation
- Analysis **statistically** limited
 - \rightarrow Expect improvements with Run-3

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

0.4

0.2

Higgs-boson CP at ATLAS

60

80

φ_τ [°]

ttH coupling

Explore top coupling using rare **production** modes

Existing measurement: t(t)H; H→yy

BDT discriminant to select CP-odd-enhanced phase-space

 \rightarrow correlate with background suppression BDT

Combined fit of yields in 2D bins of discriminant \rightarrow Exclude mixing angles above **43**° at 95% CL

Phys. Rev. Lett. 125 (2020) 061802

ATLAS-CONF-2022-016

ttH coupling

New, complementary: **ttH** measurement using H→bb decay

→ Form **top candidates** from jets & leptons to define **CP-sensitive observables**

Evaluated in multitude of signal regions

• exploit (b)-jet multiplicity and dedicated BDT classifiers

Challenge: Modelling of large tt+b background

 \rightarrow Dominant uncertainty in measurement

Results **consistent** with previous measurement in $\boldsymbol{\gamma}\boldsymbol{\gamma}$ decay

• Pure CP-odd disfavoured at 1.2σ level

Higgs-boson CP at ATLAS

 $b_{2} =$

[†] normalised to data vield

Boson couplings – VBF $H \rightarrow \gamma \gamma$

- **VBF signature** allows probe of HVV vertex
- \rightarrow Exploit properties of **dijet system** (angle between Vqq planes)
- Combine information: **Optimal observable** (matrix element discriminant)
- Direct measure of interference impact
- Vanishing mean if CP conserved

High-statistics measurement in $H \rightarrow \gamma \gamma$ decay mode

 \rightarrow Enrich signal using 2D BDT classification and VBF dijet topology

 $OO_1(c) =$

CERN-EP-2022-134

 $|\mathcal{M}_{\mathrm{Mix}}(\boldsymbol{c})|^2 - |\mathcal{M}_{\mathrm{SM}}|^2 - |\mathcal{M}_{\mathrm{BSM}}(\boldsymbol{c})|^2$

 $|\mathcal{M}_{\mathrm{SM}}|^2$

Higgs-boson CP at ATLAS

Boson couplings – VBF $H \rightarrow \gamma \gamma$

Pure shape analysis - signal rates float in fit

• Avoids model-dependence from total XS parameterisation

Results consistent with SM (symmetric OO)

Interpretation in **EFT framework** – Warsaw and HISZ bases

- Improve strongest existing bounds on CP-violating HVV couplings
- Combination with previous measurement in VBF H→ττ: Further improvement of bounds
- Sensitivity driven by **interference** rather than quadratic EFT term

	$68\%~({\rm exp.})$	$95\%~(\mathrm{exp.})$	68% (obs.)	$95\%~({\rm obs.})$
\tilde{d} (inter. only)	[-0.027, 0.027]	[-0.055, 0.055]	[-0.011, 0.036]	[-0.032, 0.059]
\tilde{d} (inter.+quad.)	[-0.028, 0.028]	[-0.061, 0.060]	[-0.010, 0.040]	[-0.034, 0.071]
\tilde{d} from $H \to \tau \tau$	[-0.038, 0.036]	-	[-0.090, 0.035]	-
Combined \tilde{d}	[-0.022, 0.021]	[-0.046, 0.045]	[-0.012, 0.030]	[-0.034, 0.057]
$c_{H\tilde{W}}$ (inter. only)	[-0.48, 0.48]	[-0.94, 0.94]	[-0.16, 0.64]	[-0.53, 1.02]
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.48, 0.48]	[-0.95, 0.95]	[-0.15, 0.67]	[-0.55, 1.07]

00

Summary and outlook

CP structure of Higgs coupling: Highly active field for run-2 measurements

- → Still space for **CP-odd** admixture, potential source for **CP violation**
- → Would be clear evidence for **BSM physics**

Efforts concentrate in two areas: Fermion and Boson couplings

- Combine use of production and decay vertices for maximum sensitivity
- Use of dedicated CP-sensitive observables ability to distinguish CPV from other BSM

Today: Some recent example from ATLAS

- Starting to probe rare & challenging topologies for CP information
- Converging on methodologies and interpretations combinations
- More ongoing & potential in Run-3 more to follow!