Higgs Boson Decays to Second Generation Fermions and other Higgs Boson Rare Decays at the ATLAS experiment

R. Ward¹, on behalf of the ATLAS Collaboration

¹University of Birmingham

International Conference on High Energy Physics (ICHEP) 2022

7th July 2022

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement no 714893 (ExclusiveHiggs)

7th July 2022 1/14

Overview

> The Higgs boson, H, couples to fermions via Yukawa couplings, $y_f = v \approx$

 \circ In the SM these are proportional to fermion mass, m_f :

$$y_f^{SM} = \frac{m_f}{v} \sqrt{2}$$

- Deviations of y_f from SM predictions could provide hints to new physics
- \circ H couplings to 3rd generation fermions have been established experimentally
 - 2nd generation is the next frontier
- >ATLAS has several analyses investigating H decays to 2^{nd} generation fermions, and other rare H decay modes:
 - \circ $H \rightarrow \mu^+ \mu^-$ and $H \rightarrow e^+ e^-$
 - \circ $H \rightarrow c\bar{c}$ via the VH production mode
 - Exclusive *H* decays to a meson and a photon, including $H \rightarrow J/\psi \gamma$
 - $\circ H \to \gamma \gamma^* \to \ell^+ \ell^- \gamma \text{ and } H \to Z \gamma \to \ell^+ \ell^- \gamma$

Search for $H \rightarrow \mu^+ \mu^-$: 139 fb⁻¹ Analysis Strategy

> $H \rightarrow \mu^+ \mu^-$ directly probes the magnitude of y_μ $\circ BR_{H \rightarrow \mu^+ \mu^-}^{SM} = (2.17 \pm 0.04) \times 10^{-4}$

• Most promising 2nd generation decay to observe at the LHC

>Use single muon triggers

- Categorise events according to H production mode $(t\bar{t}H, VH, VBF, and ggF)$
 - Divide production modes into sub-categories using process-specific boosted decision trees
 - $_{\odot}$ S/B between 120-130 GeV ranges from <0.1% to 18%
 - 0.2% inclusive
 - $_{\odot}$ Signal resolution \approx 2% in total
- Model main Drell-Yan background with LO DY lineshape × empirical functions constrained in data

Phys. Lett. B 812 (2021) 135980

R. Ward (University of Birmingham) - ICHEP 2022

Search for $H \rightarrow \mu^+ \mu^-$: 139 fb⁻¹ Analysis Results

Uncertainty on signal strength dominated by statistics

 $\circ\,$ Main systematics are signal theory uncertainties $(^{+0.13}_{-0.08})$ and spurious-signal uncertainties (± 0.1)

Improvement of a factor 2.5 compared to 36.1 fb⁻¹ ATLAS result

 Factor of 2 from larger dataset, and an additional 25% from refined event categorisation and improved background modelling

- > Binned (0.1 GeV) likelihood fit in $m(\mu^+\mu^-)$ between 110 160 GeV
- > Observed (expected) signal: $\circ 2.0\sigma (1.7\sigma)$

> Observed (expected with SM) 95% CL upper limit:

○ $BR(H \to \mu^+\mu^-) < 4.7 (2.4) \times 10^{-4} = 2.2 (2.0) \times SM$

Search for $H \rightarrow e^+e^-$: 139 fb⁻¹ Analysis Overview

- → $H \rightarrow e^+e^-$ directly probes the magnitude of y_e $\circ BR_{H\rightarrow e^+e^-}^{SM} \approx 10^{-9}$
- >Analysis strategy based on 36.1 fb⁻¹ $H \rightarrow \mu^+ \mu^$ analysis^{*}
 - Main background from DY process
 - \odot Binned likelihood fit to $m(e^+e^-)$ between $110-160~{\rm GeV}$
- >Observed (expected) limits @ 95% CL:
 - $\circ BR_{H \to e^+e^-} < 3.6 (3.5) \times 10^{-4}$
- >Include search for lepton flavour violating decay $H \rightarrow e\mu$
 - DY background significantly reduced
 - $\circ BR_{H \to e\mu} < 6.2 (5.9) \times 10^{-5}$

*<u>Phys. Rev. Lett. 119 (2017) 051802</u>

Search for $VH(\rightarrow c\overline{c})$: 139 fb⁻¹ Analysis Strategy

• $BR_{H \to c\bar{c}}^{SM} = (2.88^{+0.16}_{-0.06})\%$, where $BR_{H \to b\bar{b}}^{SM} \approx 20 \times BR_{H \to c\bar{c}}^{SM}$

≻ Target $VH(\rightarrow c\bar{c})$; validate method with $VW(\rightarrow cq)$ and $VZ(\rightarrow c\bar{c})$

 $\circ\,$ Better S/B compared to inclusive H production, especially at high $p_{
m T}^V$

Split into three channels:

• Analysis is conceptually similar to $VH(\rightarrow b\bar{b})$ with an **orthogonal selection**

R. Ward (University of Birmingham) - ICHEP 2022

l/(l,v)

v/(l,v)

Search for $VH(\rightarrow c\overline{c})$: 139 fb⁻¹ Analysis Results

Statistical and systematic uncertainties similar in magnitude

- Main systematics from the background modelling, dominated by
 - Z + jets, followed by statistics of simulated samples
- Factor 5 improvement compared to 36.1 fb⁻¹ result
 - Better flavour tagging gives 36% improvement (43% improvement with new 2-lepton signal/control regions)
 - $\,\circ\,$ Factor 2 improvement with increased dataset of 139 fb^{-1}
 - Further improvement from new 0-lepton and 1-lepton channels

- Observed (expected) significances:
 - > 3.8σ (4.6σ) for VW(cq)
 - > 2.6 σ (2.2 σ) for $VZ(c\bar{c})$
- Observed (expected) limit:
 - $> BR_{H \to c\bar{c}} < 26 (31) × SM @ 95% CL$

7th July 2022 7/14

Search for $VH(\rightarrow c\overline{c})$: κ_c Interpretation

> Define κ_c coupling modifier as the ratio of y_c over the SM-expectation:

$$\kappa_c = \frac{y_c}{y_c^{SM}}$$

Parameterise $\mu_{VH(c\bar{c})}$ in terms of κ_c in maximum-likelihood fit:

$$\mu_{VH(c\bar{c})}(\kappa_c) = \frac{\kappa_c^2}{1 + (\kappa_c^2 - 1) \times BR_{H \to c\bar{c}}^{SM}}$$

→ Observed (expected) constraints: $\circ |\kappa_c| < 8.5 (12.4) @ 95\%$ CL

Combination of 139 fb⁻¹ $VH(\rightarrow c\overline{c})$ and $VH(\rightarrow b\overline{b})$

- Preference to negative κ_b is small: difference in log-likelihood between $(\pm 1.02,0)$ is 0.02
- > Observed (expected) constraints for κ_c/κ_b ratio:
 - $|\kappa_c/\kappa_b| < 4.5 (5.1) @ 95\%$ CL

 $\frac{\kappa_c}{\kappa_b}$

1.5

0.5

68% Cl

-2

0

Search for $H \rightarrow Q(\rightarrow \mu^+\mu^-)\gamma$: 139 fb⁻¹ Analysis Strategy

 $ightarrow H
ightarrow Q\gamma$ decays are sensitive to magnitude **and sign** of $y_{c,b}$

 $\circ~\mathcal{A}_{dir}$ and \mathcal{A}_{ind} contributions destructively interfere

Charmonium: $Q = J/\psi$, $\psi(2S)$

•
$$BR_{H \to \psi(nS)\gamma}^{SM} \approx 10^{-6}$$
 ⁺

• $|\mathcal{A}_{ind}| \approx 20 \times |\mathcal{A}_{dir}|$

Bottomonium: $Q = \Upsilon(1S, 2S, 3S)$

•
$$BR_{H \to \Upsilon(nS)\gamma}^{SM} \approx 10^{-9} - 10^{-8}$$
 +

• \mathcal{A}_{ind} , \mathcal{A}_{dir} almost cancel in SM

▷ Include analogous searches for $Z \rightarrow Q\gamma$: $BR_{Z \rightarrow Q\gamma}^{SM} \approx 10^{-8} - 10^{-7}$ ‡

Dedicated combined single photon + muon triggers

 $\,\circ\,$ Distinct signature in detector with small QCD backgrounds

Split background model into two components

- Inclusive: y + jet and multi-jet events involving Q or $\mu^+\mu^-$
 - Non-parametric data-driven background model see talk by J. Silva
- \circ Exclusive: $q\bar{q} \rightarrow \mu^+ \mu^- \gamma$, modelled using MC

See my poster on this analysis for more details!

[†]Phys. Rev. D 100 (2019) 054038 [‡]Phys. Rev. D 97 (2018) 016009

R. Ward (University of Birmingham) - ICHEP 2022 Higgs Boson Couplings to 2nd Generation Fermions at ATLAS

Search for $H \to Q(\to \mu^+\mu^-)\gamma$: 139 fb⁻¹ Analysis Results

> Signal resolution $\approx 1.7\%$ (simulate ggF, VBF, VH, $t\bar{t}H$)

- > Use **2D** unbinned likelihood fit in $m(\mu^+\mu^-)$, $m(\mu^+\mu^-\gamma)$
 - Discriminates between **all** signal and background contributions
- Statistical uncertainty dominates
 - $\,\circ\,$ Systematics reduce sensitivity to the H~(Z) signals by at most 1% (5%)
 - Main systematics are in the inclusive background shape

Summary of Exclusive $H \rightarrow M\gamma$ Search Results

Searches for $H \to (Z/\gamma^*)\gamma \to \ell^+\ell^-\gamma$ ($\ell = e, \mu$): 139 fb⁻¹ Results

 $> BR_{H \to Z\gamma}^{SM} = 0.154\%$

 $> 81.2 < m_{\ell\ell} < 101.2 \; {\rm GeV}$

- $\circ~$ Main background is non-resonant $Z\gamma$ production
- > Observed (expected with SM) 95% CL:

 $\circ BR_{H \to Z\gamma}^{SM} < 3.6 (2.6) \times SM$

Factor 2.4 improvement compared to previous analysis

 $H \rightarrow \gamma^* \gamma \rightarrow \ell^+ \ell^- \gamma$: Phys. Lett. B 819 (2021) 136412

 $Bkg + H \rightarrow \gamma\gamma$

- Bkg + H $\rightarrow \gamma\gamma$ + Sig (μ = 1.5)

25 130 135 140 145 150 155 160

 Σ weights / GeV

Bkg

∑

 \circ 3.2 σ (2.1 σ)

10

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

 $ln(1 + S_{\infty} / B_{\infty})$ weighted sum

 $> BR_{H \to ee\gamma}^{SM} = 7.20 \times 10^{-5}; BR_{H \to \mu\mu\gamma}^{SM} = 3.42 \times 10^{-5}$

 $> m_{\ell\ell} < 30$ GeV, excluding J/ψ and $\Upsilon(nS)$ resonances

• Main background is non-resonant $\ell \ell \gamma$ production

> Observed (expected with SM) significance:

• First evidence for $H \rightarrow \ell \ell \gamma$

Summary

- ATLAS has many analyses searching for H decays to 2nd generation fermions and other rare decays:
 - $\circ H \rightarrow \mu^+ \mu^-$ and $H \rightarrow e^+ e^-$
 - $\circ VH \rightarrow c\bar{c}$ combine with $VH \rightarrow b\bar{b}$
 - $\circ H \rightarrow Q\gamma \text{new result!}$
 - $\circ H \to (\phi/\rho) \gamma$

$$D H \to Z \gamma \to \ell^+ \ell^- \gamma$$

- $\circ H \to \gamma^* \gamma \to \ell^+ \ell^- \gamma$ evidence for process
- Many exciting avenues to test SM predictions and to search for new physics scenarios

$$H \rightarrow \mu^+ \mu^-$$

$VH(\rightarrow c\bar{c})$

ADDITIONAL SLIDES

Precision measurements of p_{T}^{H} : 139 fb⁻¹ Analysis Overview

- → Use precision measurements of the differential $p_{\rm T}^H$ cross section from $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma$ analyses to indirectly constrain κ_c and κ_b
 - > Sensitive to the sign of κ_c and κ_b
 - Combine results for increased sensitivity

Precision measurements of p_{T}^{H} : 139 fb⁻¹ Analysis Results

- > Combined $p_{\rm T}^{\rm H}$ measurement remains dominated by statistical uncertainties
 - $\,\circ\,$ Compatibility of result with SM is 20%
- > Only consider measured shape in $\kappa_{c,b}$ interpretation
 - Removes assumptions associated with various branching fractions caused by $\kappa_{c,b}$ dependence of Γ_H

- Expected combined constraint more stringent than individual channels
- > Observed combined constraint typically less stringent than $H \rightarrow ZZ^* \rightarrow 4l$
 - > Partially caused by double minimum in likelihood associated with quadratic dependence of $\frac{d\sigma}{dp_T^H}$ on $\kappa_{c,b}$

Combination: ATLAS-CONF-2022-002

Complementarity with $VH(\rightarrow b\overline{b}/c\overline{c})$

> Consider measured shape of p_T^H for $\kappa_{c,b}$ interpretation > Complements $VH(\rightarrow c\bar{c}/b\bar{b})$ result

Indirect constraints on $\kappa_{c,b}$ from p_{T}^{H} Measurements

Channel	Parameter best-fit	Observed 95% confidence interval	Expected 95% confidence interval	
$H \to ZZ^* \to 4\ell$	$\kappa_b = 1.8^{+2.3}_{-2.1}$	$[-1.9, \ 6.3]$	[-3.6, 9.3]	
	$\kappa_c = 7.9^{+5.7}_{-8.8}$	$[-9.0, \ 18.5]$	[-14.2, 19.5]	
$H\to\gamma\gamma$	$\kappa_b = 6.1^{+2.0}_{-8.2}$	$[-3.7, \ 10.2]$	[-2.8, 8.1]	
	$\kappa_c = -0.7^{+12.3}_{-9.2}$	[-14.5, 19.1]	[-12.0, 17.7]	
Combined	$\kappa_b = 3.3^{+2.4}_{-4.1}$	$[-2.1, \ 7.4]$	[-2.2, 7.4]	
	$\kappa_c = 8.3^{+5.5}_{-13.8}$	$[-10.1, \ 18.3]$	[-10.3, 16.6]	

Search for $H \rightarrow (\phi/\rho)\gamma$: Early Run-2 Analysis Results

 $> H \rightarrow \phi(K^+K^-)\gamma$ sensitive to magnitude and sign of y_s

 \circ $H \rightarrow \rho(\pi^+\pi^-)\gamma$ sensitive to magnitude and sign of $y_{u,d}$

- \rightarrow Direct and indirect decay amplitudes analogous to $H \rightarrow Q\gamma$ $\circ BR_{H \to \phi \gamma(\rho \gamma)}^{SM} \approx 10^{-6} (10^{-5})$
- \triangleright Include analogous searches for $Z \rightarrow (\phi/\rho)\gamma$ $\circ BR_{Z \to \phi \gamma(\rho \gamma)}^{SM} \approx 10^{-8}$
- > **Dedicated** triggers based on single photon + modified τ -lepton algorithms
 - Signal resolution $\approx 1.8\%$
- \succ Similar signal and background modelling strategy to $H \rightarrow Q\gamma$
 - Background model is fully data driven
 - No backgrounds resonant in $m(K^+K^-\gamma)$ or $m(\pi^+\pi^-\gamma)$
 - Validate model in $m(K^+K^-)$ and $m(\pi^+\pi^-)$ sidebands

 \succ Use unbinned likelihood fit to $m(K^+K^-\gamma)$ and $m(\pi^+\pi^-\gamma)$

JHEP 07 (2018) 127

50

GeV

Events

100

Limits for $H \to (Q, \phi, \rho)\gamma$

95% CL_s upper limits								
	Branching fraction				$\sigma \times \mathcal{B}$			
Decay	Higgs boson [10 ⁻⁴]		Z boson [10 ⁻⁶]		Higgs boson [fb]	Z boson [fb]		
channel	Expected	Observed	Expected	Observed	Observed	Observed		
$J/\psi~\gamma$	$1.9^{+0.8}_{-0.5}$	2.1	$0.6^{+0.3}_{-0.2}$	1.2	12	71		
$\psi\left(2S\right)\gamma$	$8.5^{+3.8}_{-2.4}$	10.9	$2.9^{+1.3}_{-0.8}$	2.3	61	135		
$\Upsilon(1S) \gamma$	$2.8^{+1.3}_{-0.8}$	2.6	$1.5^{+0.6}_{-0.4}$	1.0	14	59		
$\Upsilon(2S) \gamma$	$3.5^{+1.6}_{-1.0}$	4.4	$2.0^{+0.8}_{-0.6}$	1.2	24	71		
$\Upsilon(3S) \gamma$	$3.1^{+1.4}_{-0.9}$	3.5	$1.9^{+0.8}_{-0.5}$	2.3	19	135		

Branching Fraction Limit (95% CL)	Expected	Observed
$\mathcal{B}\left(H\to\phi\gamma\right)\left[\ 10^{-4}\ \right]$	$4.2^{+1.8}_{-1.2}$	4.8
$\mathcal{B}\left(Z \to \phi \gamma\right) \left[\ 10^{-6} \ \right]$	$1.3^{+0.6}_{-0.4}$	0.9
$\mathcal{B}\left(H\to\rho\gamma\right)\left[\ 10^{-4}\ \right]$	$8.4^{+4.1}_{-2.4}$	8.8
$\mathcal{B}\left(Z\to\rho\gamma\right)\left[\ 10^{-6}\ \right]$	33^{+13}_{-9}	25