Constraining the Higgs boson self-coupling in a combined measurement of single- and double-Higgs boson channels at the ATLAS experiment

Valerio D'Amico

Ludwig-Maximilians-Universität München

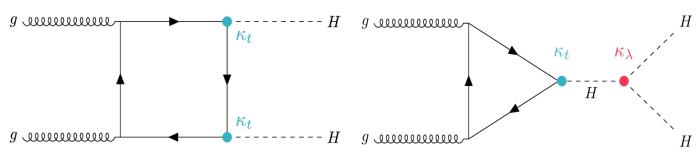
On behalf of the ATLAS Collaboration

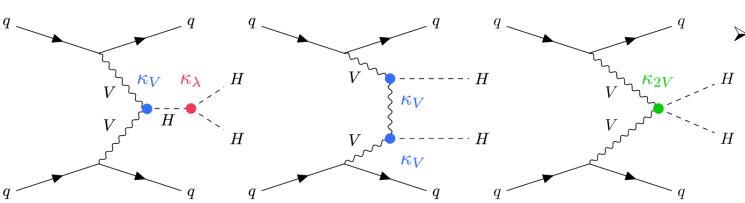
7 July 2022 ICHEP 2022, Bologna (Italy)

The Higgs boson self-coupling

Within the SM, the Higgs potential is: $V(\Phi) = \mu^2(\Phi^{\dagger}\Phi) + \lambda(\Phi^{\dagger}\Phi)^2$ with $\mu^2 < 0$ and $\lambda > 0$

Expanding Φ at low energies around the minimum v, it becomes: $V(H) = \frac{1}{2} m_H^2 H^2 + \lambda_3 v H^3 + \frac{1}{4} \lambda_4 H^4 + O(H^5)$ where the Higgs self-coupling λ_3 depends only on m_H and v: $\lambda_3 = \lambda_{HHH} = \frac{m_H^2}{2v^2}$

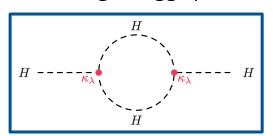

> New physics could modify the Higgs potential altering λ_3 without affecting m_H or v: e.g. by extending the scalar sector or due to the exchange of new virtual states

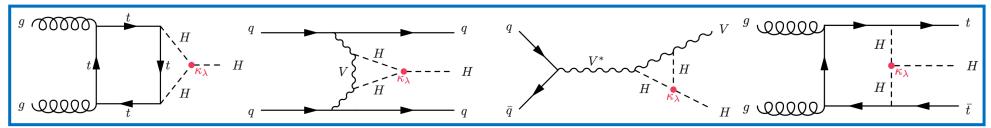

The Higgs boson self-coupling

Within the SM, the Higgs potential is: $V(\Phi) = \mu^2(\Phi^{\dagger}\Phi) + \lambda(\Phi^{\dagger}\Phi)^2$ with $\mu^2 < 0$ and $\lambda > 0$

Expanding Φ at low energies around the minimum v, it becomes: $V(H) = \frac{1}{2} m_H^2 H^2 + \lambda_3 v H^3 + \frac{1}{4} \lambda_4 H^4 + O(H^5)$ where the Higgs self-coupling λ_3 depends only on m_H and v: $\lambda_3 = \lambda_{HHH} = \frac{m_H^2}{2v^2}$

> New physics could modify the Higgs potential altering λ_3 without affecting m_H or v: e.g. by extending the scalar sector or due to the exchange of new virtual states

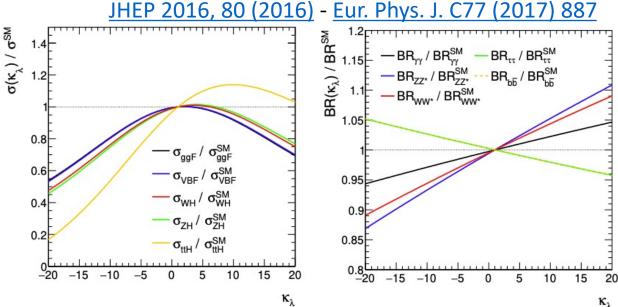



- \succ Experimental results are expressed in terms of the coupling modifier $\kappa_{\lambda} = \lambda_3/\lambda_3^{SM}$
- Gluon-gluon Fusion (ggF): leading production mode $\sigma_{ggF}^{SM}(pp \rightarrow HH) = 31.05^{+1.9}_{-7.1} \, \text{fb} \, \text{at} \, \sqrt{s} = 13 \, TeV$
- ightharpoonup Vector Boson Fusion (VBF) production mode gives also access to κ_{2V} coupling

$$\sigma_{VBF}^{SM}(pp \to HH) = 1.72 \pm 0.04 \text{ fb} \text{ at } \sqrt{s} = 13 \text{ TeV}$$

Self-coupling in single-Higgs process

 \triangleright Single-Higgs processes are **indirectly** sensitive to κ_{λ} via NLO EW corrections:


Universal correction $o(\kappa_{\lambda}^2)$: Higgs loops

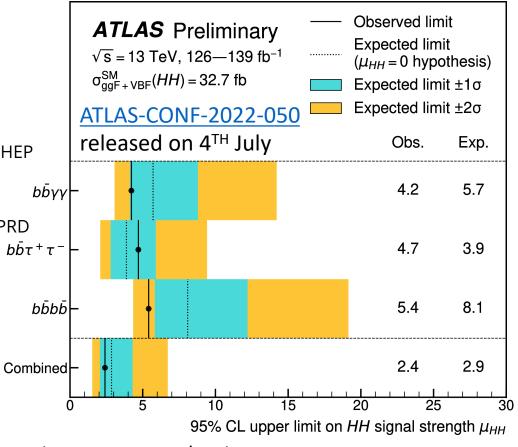
Linear correction $O(\kappa_{\lambda})$: both process and kinematics dependent

- > Production modes cross section (i) and decay branching ratios (f) vary as a function of κ_{λ}
- Global normalization and differential distribution are modified
- > Interpretation of single-Higgs-boson analyses using signal strength depending on κ_{λ} :

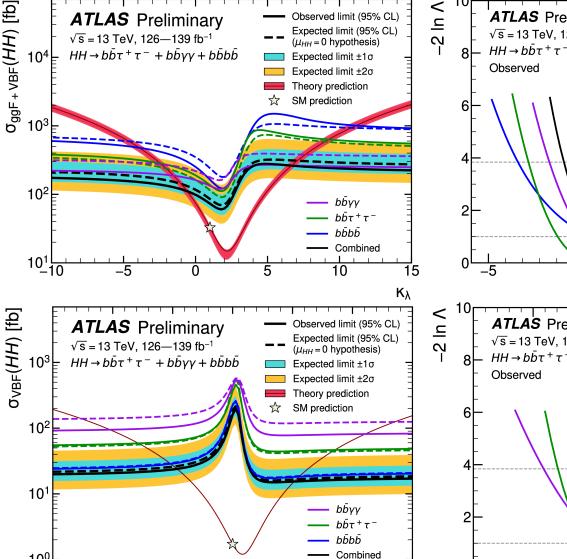
$$\mu_{i}^{f}(\kappa_{\lambda}) \equiv \mu_{i}(\kappa_{\lambda}) \times \mu^{f}(\kappa_{\lambda}) = \frac{\sigma_{i}(\kappa_{\lambda})}{\sigma_{SM,i}} \times \frac{BR_{f}(\kappa_{\lambda})}{BR_{SM,f}}$$

> Therefore precise measurements of inclusive and differential production cross sections and decays provide indirect constraints on κ_{λ}

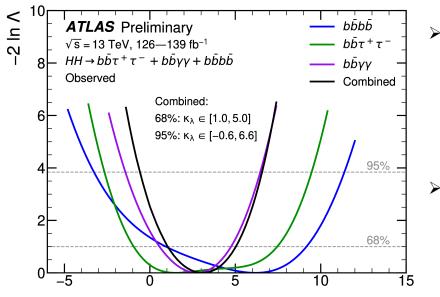
New ATLAS combination: full Run 2 input analyses

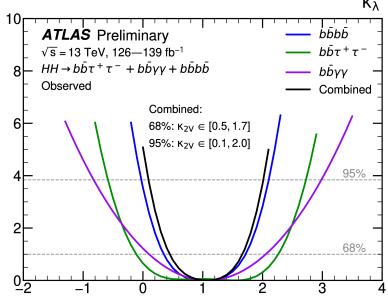

 \triangleright Take advantage of full Run 2 statistics using STXS differential information for single-Higgs channels (no STXS for ggF)

$H \to \tau^+ \tau^ H \to WW^* \to ev\mu v \text{ (ggF,VBF)}$ $H \to b\bar{b} \text{ (VH)}$ $H \to b\bar{b} \text{ (VBF)}$	Channel	Integrated luminosit	ry (fb ⁻¹) Ref.
$HH \rightarrow b\bar{b}b\bar{b}$ $126 ATLAS-CONF-2022-035$ $H \rightarrow \gamma\gamma$ $H \rightarrow ZZ^* \rightarrow 4\ell$ $H \rightarrow \tau^+\tau^-$ $H \rightarrow WW^* \rightarrow e\nu\mu\nu \text{ (ggF,VBF)}$ $H \rightarrow b\bar{b} \text{ (VH)}$ $H \rightarrow b\bar{b} \text{ (VBF)}$ $139 CERN-EP-2022-094 \text{ to appear on JHEP}$ $139 Eur. \text{ Phys. J. C 80 (2020) 957}$ $139 CERN-EP-2022-078 \text{ to appear on PRD}$ $139 Eur. \text{ Phys. J. C 81 (2021) 178}$ $139 Eur. \text{ Phys. J. C 81 (2021) 178}$ $139 Eur. \text{ Phys. J. C 81 (2021) 537}$ $130 Pring 2111 06712$	$HH \rightarrow b\bar{b}\gamma\gamma$	139	arXiv: 2112.11876
$H \to \gamma \gamma$ 139 CERN-EP-2022-094 to appear on JHEP $H \to ZZ^* \to 4\ell$ 139 Eur. Phys. J. C 80 (2020) 957 $H \to \tau^+\tau^-$ 139 arXiv:2201.08269 $H \to WW^* \to ev\mu v$ (ggF,VBF) 139 CERN-EP-2022-078 to appear on PRD $H \to b\bar{b}$ (VH) 139 Eur. Phys. J. C 81 (2021) 178 $b\bar{b}\tau^+\tau$ $H \to b\bar{b}$ (VBF) 126 Eur. Phys. J. C 81 (2021) 537 $H \to b\bar{b}$ ($t\bar{t}H$) 130 arXiv:2111.06712	HH o bar b auar au	139	ATLAS-CONF-2021-030
$H \to ZZ^* \to 4\ell$ 139 Eur. Phys. J. C 80 (2020) 957 $b\bar{b}_1$ $H \to \tau^+\tau^-$ 139 arXiv:2201.08269 $b\bar{b}_1$ $H \to WW^* \to e\nu\mu\nu$ (ggF,VBF) 139 CERN-EP-2022-078 to appear on PRD $H \to b\bar{b}$ (VH) 139 Eur. Phys. J. C 81 (2021) 178 $b\bar{b}\tau^+\tau^ H \to b\bar{b}$ (VBF) 126 Eur. Phys. J. C 81 (2021) 537	$HH o b ar{b} b ar{b}$	126	ATLAS-CONF-2022-035
$H \to \tau^+ \tau^-$ 139 <u>arXiv:2201.08269</u> $b\bar{b}\gamma$ $H \to WW^* \to ev\mu v \text{ (ggF,VBF)}$ 139 <u>CERN-EP-2022-078</u> to appear on PRD $H \to b\bar{b} \text{ (VH)}$ 139 <u>Eur. Phys. J. C 81 (2021) 178</u> $b\bar{b}\tau^+ \tau$ $H \to b\bar{b} \text{ (VBF)}$ 126 <u>Eur. Phys. J. C 81 (2021) 537</u>	$H \to \gamma \gamma$	139	CERN-EP-2022-094 to appear on JHEP
$H \to \tau^+ \tau^ H \to WW^* \to e \nu \mu \nu \text{ (ggF,VBF)}$ $H \to b\bar{b} \text{ (VH)}$ $H \to b\bar{b} \text{ (VBF)}$ $H \to b\bar{b} \text{ (VBF)}$ $H \to b\bar{b} \text{ (VBF)}$ $H \to b\bar{b} \text{ (variable)}$	$H o ZZ^* o 4\ell$	139	Eur. Phys. J. C 80 (2020) 957
$H \to b\bar{b}$ (VH) 139 <u>Eur. Phys. J. C 81 (2021) 178</u> $b\bar{b}\tau^+\tau$ $H \to b\bar{b}$ (VBF) 126 <u>Eur. Phys. J. C 81 (2021) 537</u>	$H ightarrow au^+ au^-$	139	<u>arXiv:2201.08269</u> <i>bb</i> γγ
$H \to b\bar{b}$ (VBF) 126 Eur. Phys. J. C 81 (2021) 537	$H \rightarrow WW^* \rightarrow e \nu \mu \nu \text{ (ggF,VBF)}$	139	CERN-EP-2022-078 to appear on PRD
$U \rightarrow b\bar{b} (t\bar{t}U)$ 120 arViv:2111.06712	$H \to b\bar{b}$ (VH)	139	Eur. Phys. J. C 81 (2021) 178 $b\bar{b}\tau^+\tau^-$
$H = h\bar{h} + (\bar{t}H)$ 120 arXiv:2111.06712	$H \to b\bar{b}$ (VBF)	126	Eur. Phys. J. C 81 (2021) 537
$ \Pi \rightarrow UU (II\Pi) \qquad \qquad 139 \underline{dIAIV.Z111.U0/12} \qquad \qquad bbl $	$H \to b\bar{b} (t\bar{t}H)$	139	arXiv:2111.06712 bbbb



- \blacktriangleright Most sensitive HH analyses used: $b\bar{b}b\bar{b}$, $b\bar{b}\tau\tau$, $b\bar{b}\gamma\gamma$
 - \rightarrow NEW!! Obs. (exp.) 95% CL combined limit on HH signal strength, assuming no HH production:


$$\mu_{HH} = \sigma_{ggF+VBF}^{HH} / \sigma_{ggF+VBF}^{HH,SM} = 2.4 (2.9) \times SM$$

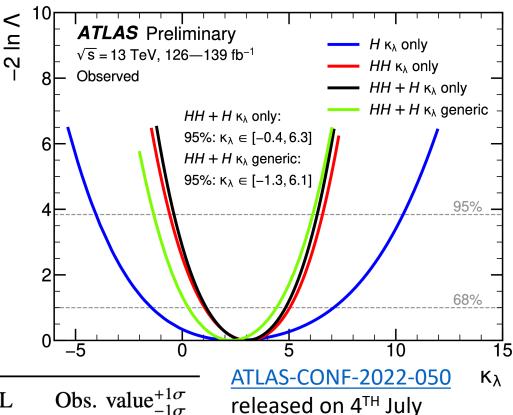


Double-Higgs combination results

ATLAS Preliminary

 K_{2V}

- > 95% CL limits on HH cross section as a function of κ_{λ} (top left) and κ_{2V} (bottom left) have been derived, setting all the other couplings to their SM values
- \triangleright Constraints on κ_{λ} and κ_{2V} from test statistics ($-2 \ln \Lambda$) scans:

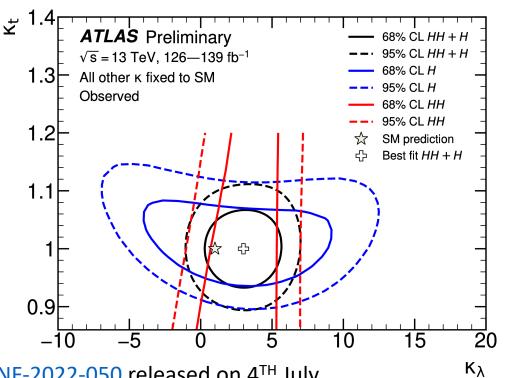


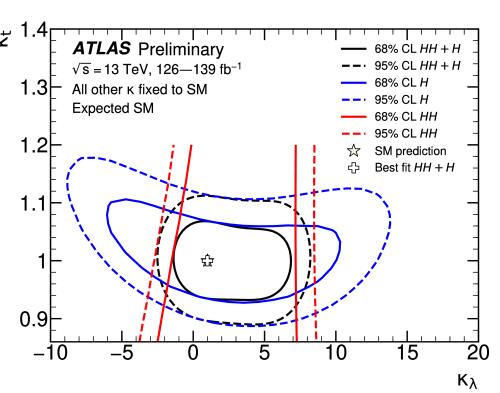
Observed (expected) 95% *CL* constraint on κ_{λ} of $-0.6 < \kappa_{\lambda} < 6.6$ $(-2.1 < \kappa_{\lambda} < 7.8)$ \rightarrow Best result from **HH** to date!

Observed (expected) 95% CL constraint on κ_{2V} of $\mathbf{0.1} < \kappa_{2V} < \mathbf{2.0}$ $(0.0 < \kappa_{2V} < 2.1)$

Single + Double-Higgs combination results

- > Main advantage of the combination is the possibility to relax the assumptions on the coupling modifiers to other SM particles
- > A global Likelihood function $L(\vec{\alpha}, \vec{\theta})$ is obtained as the product of the likelihoods of each input analyses
- > Correlations between single-*H* and *HH* systematic uncertainties are taken into account
- \triangleright Experimental constraints obtained on κ_{λ} via a scan of the negative-logarithm of the profile likelihood, for various fit configurations with different assumptions on coupling modifiers:


Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
HH combination	$-0.6 < \kappa_{\lambda} < 6.6$	$-2.1 < \kappa_{\lambda} < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single-H combination	$-4.0 < \kappa_{\lambda} < 10.3$	$-5.2 < \kappa_{\lambda} < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
HH+H combination	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.5$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
HH+H combination, κ_t floating	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
HH+H combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.3 < \kappa_{\lambda} < 6.1$	$-2.1 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$


Most generic fit configuration

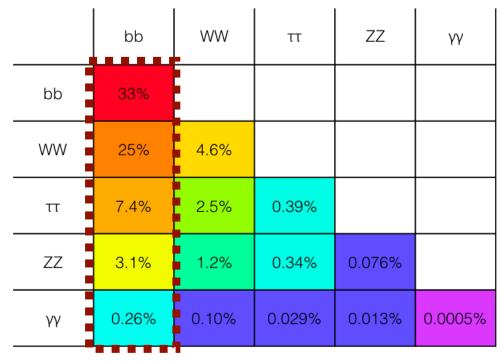
→ less model dependent results!

Single + Double-Higgs combination results

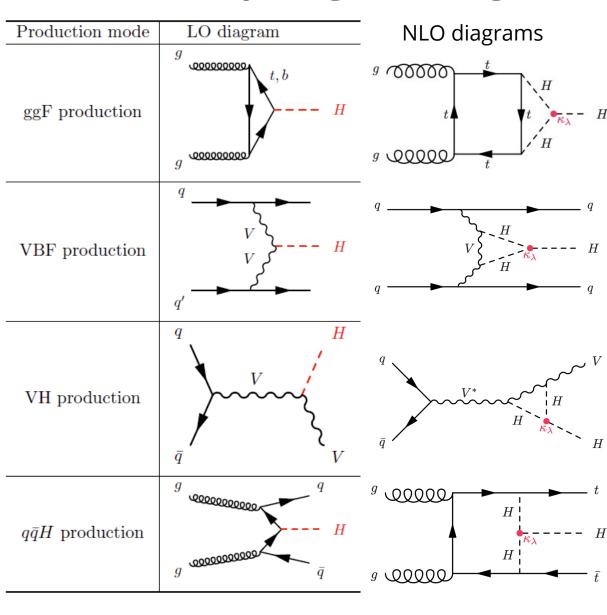
- \triangleright Log-Likelihood contour plots are derived in the $\kappa_{\lambda} \kappa_{t}$ plane from the fit with the only these two parameters floating
- \triangleright Strong constraints on κ_t coming from single-Higgs measurements
- \triangleright Big improvement obtained with respect to the previous combination result (27.5 79.8 fb^{-1})
- > Stronger constraints both from single-Higgs and from double-Higgs updated measurements

Conclusions

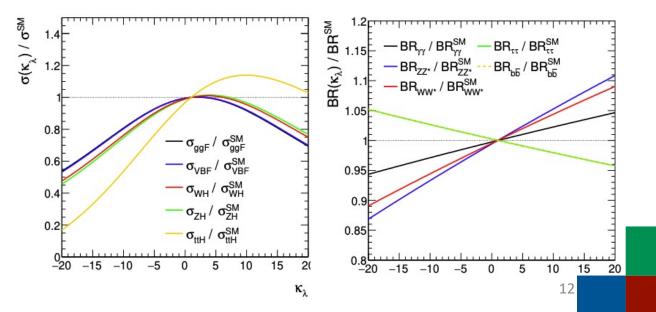
- > The most up-to-date single- and double-Higgs boson analyses, which are based on the complete Run 2 LHC dataset collected by the ATLAS detector, have been recently combined to investigate the Higgs boson self-interaction
- \triangleright New combination of $b\bar{b}b\bar{b}$, $b\bar{b}\tau\tau$ and $b\bar{b}\gamma\gamma$ double-Higgs analyses:
 - * Observed (expected) upper limit of 2.4 (2.9) at 95% CL on μ_{HH}
 - ❖ Observed constraint of $-0.6 < \kappa_{\lambda} < 6.6$ at 95% *CL* with κ_{λ} -only fit, best limit to date from *HH* analyses!
 - Observed constraint of $0.1 < \kappa_{2V} < 2.0$ at 95% *CL*, exploiting *VBF HH* production mode sensitivity
- \triangleright More stringent and less model dependent constraints on κ_{λ} obtained from H + HH analyses combination:
 - ❖ Observed constraint of $-0.4 < \kappa_{\lambda} < 6.3$ (exp. $-1.9 < \kappa_{\lambda} < 7.5$) at 95% *CL* with κ_{λ} -only fit
 - Observed constraint of $-1.3 < \kappa_{\lambda} < 6.1$ (exp. $-2.1 < \kappa_{\lambda} < 7.6$) at 95% *CL* with generic fit (κ_{λ} , κ_{t} , κ_{b} , κ_{τ} , κ_{v} floating)
 - * Less model dependent but still strong constraint on Higgs boson self-coupling obtained from generic fit
- > To date, this study provides the most stringent constraints on the Higgs boson self-coupling!


Thanks for the attention!

Backup


HH decay modes

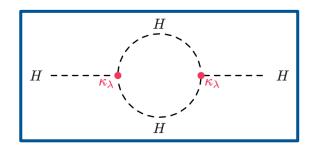
Larger BR from $H \to bb$ decay, required by the majority of analyses for one of the two H decays. For the second Higgs, analyses focus on different decay modes, in particular the most used are:


- $\rightarrow b\overline{b}b\overline{b}$: larger BR, but challenging backgrounds from multijet production
- $ightharpoonup b \overline{b}WW$: second leading BR, large $t \overline{t}$ background, searches in both semi-leptonic and di-leptonic final states
- $ightharpoonup b\overline{b}\tau\tau$ and $b\overline{b}ZZ$: smaller BRs, leptons (e/μ) or hadronic- τ used for triggering depending on the final state
- $ightharpoonup b \overline{b} \gamma \gamma$: smallest BR but very sensitive analysis thanks to the excellent acceptance ($\gamma \gamma$ trigger) and reconstruction resolution

Self-coupling in Single-Higgs processes

- Single-Higgs processes are indirectly sensitive to κ_{λ} via NLO EW corrections
- Production modes cross section (i) and decay branching ratios (f) vary as a function of κ_{λ}
- Global normalization and differential distribution are modified
- Interpretation of single-Higgs-boson analyses using signal strength depending on κ_{λ} : $\mu_{i}^{f}(\kappa_{\lambda}) \equiv \mu_{i}(\kappa_{\lambda}) \times \mu^{f}(\kappa_{\lambda})$

Self-coupling impact on Single-Higgs

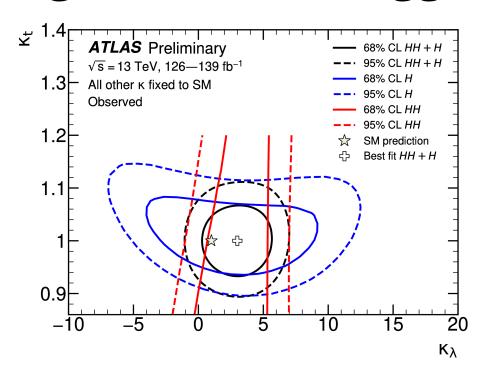

$$\mu_{if}(\kappa_{\lambda}) = \mu_{i}(\kappa_{\lambda}) \times \mu_{f}(\kappa_{\lambda})$$

Impacts on the production modes (i) and the decay channels (f) expressed as:

$$\mu_i(\kappa_{\lambda}, \kappa_i) = \frac{\sigma^{BSM}}{\sigma^{SM}} = Z_H^{BSM}(\kappa_{\lambda}) \left[\kappa_i^2 + \frac{(\kappa_{\lambda} - 1)C_1^i}{K_{EW}^i} \right]$$

$$\mu_f(\kappa_{\lambda}, \kappa_f) = \frac{BR_f^{BSM}}{BR_f^{SM}} = \frac{\kappa_f^2 + (\kappa_{\lambda} - 1)C_1^f}{\sum_j BR_j^{SM} \left[\kappa_j^2 + (\kappa_{\lambda} - 1)C_1^j\right]}$$

 Z_H^{BSM} : wave function renormalization, accounts for the universal correction


$$Z_H^{BSM}(\kappa_{\lambda}) = \frac{1}{1 - (\kappa_{\lambda}^2 - 1)\delta Z_H} \quad \text{with} \quad \delta Z_H = -1.536 \times 10^{-3}$$

 C_1 : process and kinematic-dependent coefficients, it encodes the magnitude of the kl-dependent linear correction

 K_{EW} : represents the full set of NLO EW corrections

 κ_f and κ_i consist of: κ_{λ} , $\kappa_{V} (= \kappa_W = \kappa_Z)$, κ_t , κ_h , κ_{τ} , $\kappa_c (= \kappa_t)$, $\kappa_s (= k_h)$, $\kappa_{U} (= \kappa_{\tau})$

Single + Double-Higgs combination results

Best fit values for κ_{λ} and κ_{t} for the different fits with both coupling modifiers floating and the others set to 1:

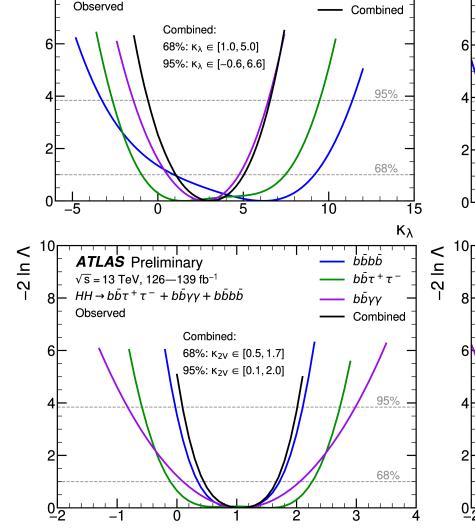
Data	κλ	κ _t
Н	2.5	1.0
HH	1.2	0.1
HH+H	3.0	1.0

From HH to HH+H: κ_t shift from 0.1 to 1

 \rightarrow Therefore the constraining power on κ_{λ} change as well

Comparison with most generic fit:

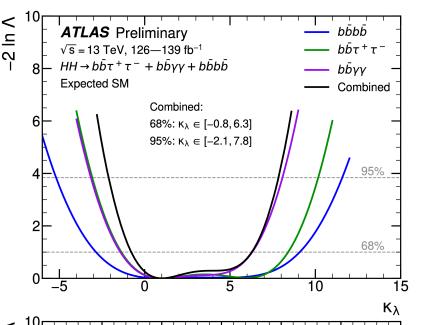
- \triangleright Post-fit values of coupling modifiers for κ_{λ} -only and generic fit configurations
- \succ Other couplings κ_t , κ_b , κ_τ goes below 1 causing κ_λ best fit value to go from 3.0 to 2.3

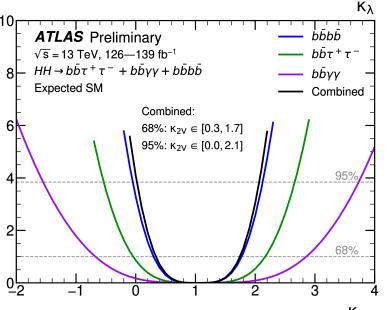

POIs	$\kappa_V^{+1\sigma}_{-1\sigma}$	$\kappa_{t-1\sigma}^{+1\sigma}$	$\kappa_{b}^{+1}_{-1}\sigma$	$\kappa_{\tau}^{+1}\sigma_{-1}\sigma$	$\kappa_{\lambda-1\sigma}^{+1\sigma}$	κ _λ [95% CL]	
V.	1	1	1	1	$3.0^{+1.8}_{-1.9}$	[-0.4, 6.3]	Obs.
K_{λ}			1		$1.0^{+4.8}_{-1.7}$	[-1.9, 7.5]	Exp.
κ_{λ} - κ_{t} fit	1	$1.00^{+0.05}_{-0.04}$	1	1	$3.0^{+1.8}_{-1.9}$	[-0.4, 6.3]	Obs.
		$1.00^{+0.05}_{-0.04}$			$1.0^{+4.8}_{-1.7}$	[-1.9, 7.6]	Exp.
Generic fit	$1.00^{+0.05}_{-0.05}$	$0.93^{+0.07}_{-0.06}$	$0.90^{+0.12}_{-0.11}$	$0.93^{+0.08}_{-0.07}$	$2.3^{+2.1}_{-2.0}$	[-1.3, 6.1]	Obs.
Generic iit	$1.00^{+0.05}_{-0.05}$	$1.00^{+0.07}_{-0.07}$	$1.00^{+0.12}_{-0.12}$	$1.00^{+0.08}_{-0.08}$	$1.0^{+5.0}_{-1.8}$	[-2.1, 7.6]	Exp.

Double-Higgs combination results

- bbbb

--- $b\bar{b}\tau^+\tau^-$

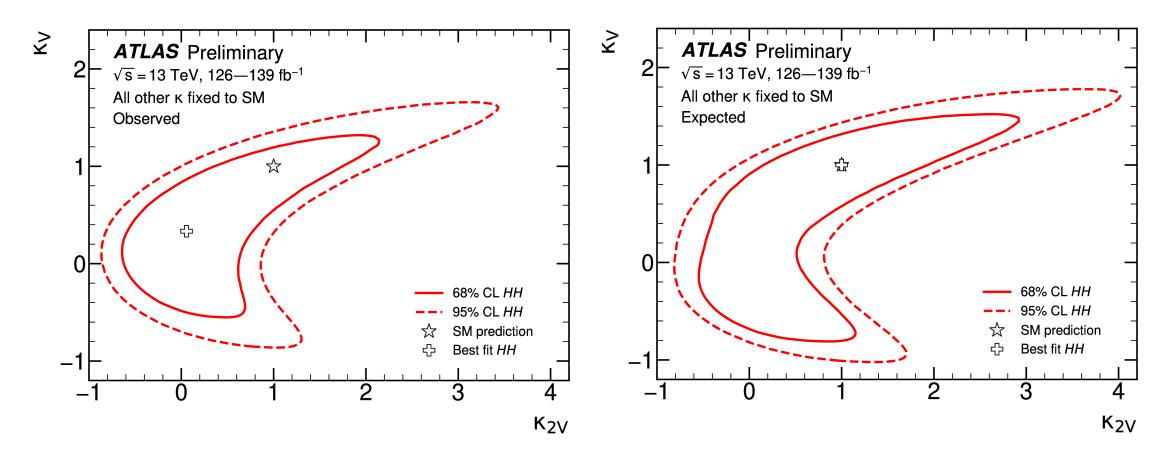

 K_{2V}



ATLAS Preliminary

 \sqrt{s} = 13 TeV, 126—139 fb⁻¹

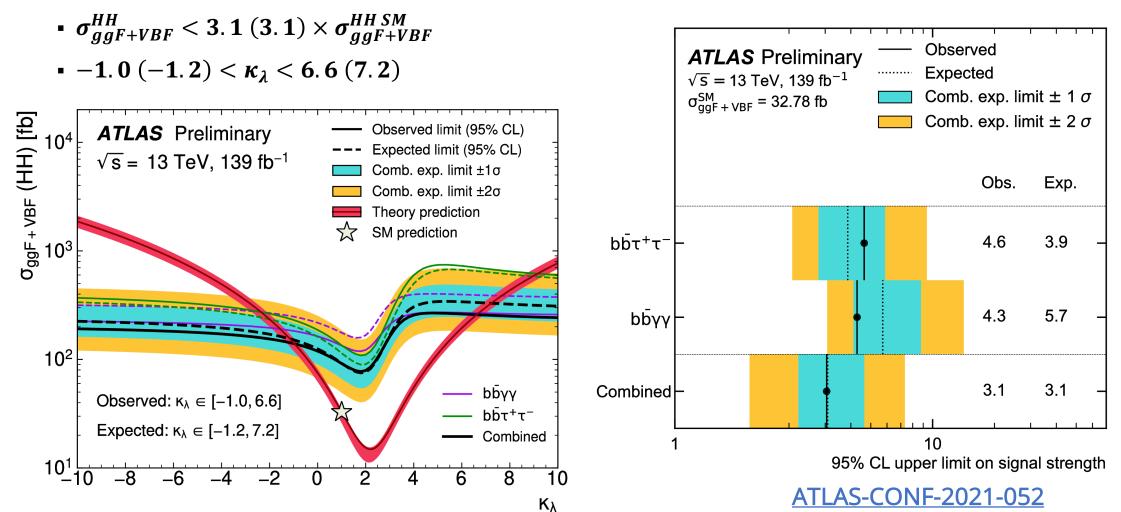
 $HH \rightarrow b\bar{b}\tau^{+}\tau^{-} + b\bar{b}\gamma\gamma + b\bar{b}b\bar{b}$


Observed (left) and expected (right) value of the test statistics ($-2 \ln \Lambda$), as a function of the κ_{λ} (top) and κ_{2V} (bottom) parameter for the three leading HH analyses and their combination.

All other coupling modifiers are fixed to their SM value.

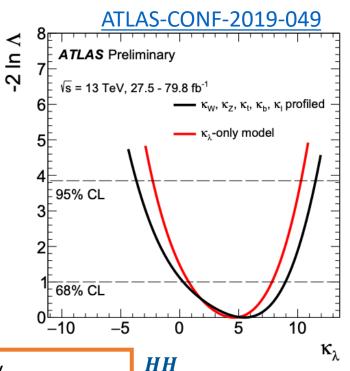
Observed (expected) 95% *CL* constraint on κ_{λ} of $-0.6 < \kappa_{\lambda} < 6.6$ ($-2.1 < \kappa_{\lambda} < 7.8$) \rightarrow Best result from *HH* to date!

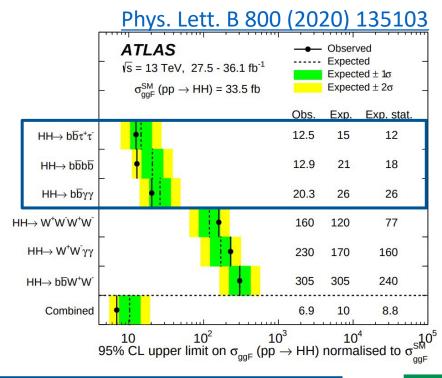
Observed (expected) 95% *CL* constraint on κ_{2V} of **0**. **1** < κ_{2V} < **2**. **0** (0.0 < κ_{2V} < 2.1)


Double-Higgs combination results

Observed (left) and expected (right) constraints in the κ_{2V} – κ_V plane from double-Higgs combination The solid (dashed) lines show the 68% (95%) *CL* contours.

ATLAS *HH* combination (before including $HH \rightarrow b\overline{b}b\overline{b}$)


- > Preliminary combination of the non-resonant *HH* searches
- \gt Combination of $b\overline{b}\tau\tau$ and $b\overline{b}\gamma\gamma$ full Run2 non-resonant analyses leads to improved observed (expected) limits at 95%CL:



Previous ATLAS H + HH combination

- > Combination of partial Run 2 most sensitive *HH* analyses and single-Higgs analyses
- > Simplified Template Cross Section (STXS) for VH and VBF production modes used to include differential information
- \succ Results obtained fitting κ_{λ} -only (all other couplings set to 1), and with a generic model fitting all κ_{λ} , κ_{t} , κ_{b} , κ_{l} , κ_{V} couplings

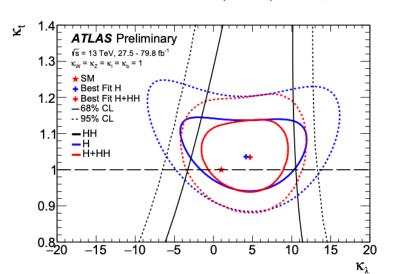
Analysis	$L\ [fb^{-1}]$
$H o \gamma \gamma$	79.8
$H{ ightarrow}$ $ZZ^*{ ightarrow}$ 4 ℓ	79.8
$H{ ightarrow}WW^*{ ightarrow}e u\mu u$	36.1
$ extcolor{H} ightarrow au au$	36.1
VH, H $ ightarrow$ $bar{b}$	79.8
$tar t H,\ H o bar b$	36.1
$tar{t}H$ multilepton	36.1
HH o bbbb	36.1
$ extstyle HH o bb\gamma\gamma$	36.1
HH o bb au au	36.1

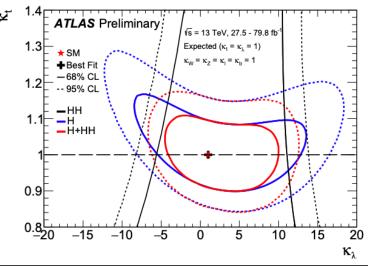
H + HH

 $\kappa_{\lambda} = 4.6^{+3.2}_{-3.8}$ best fit value κ_{λ} -only

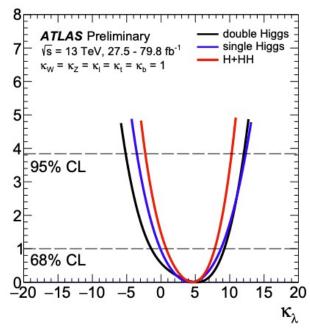
 $\kappa_{\lambda} = 5.5^{+3.5}_{-5.2}$ best fit value generic model

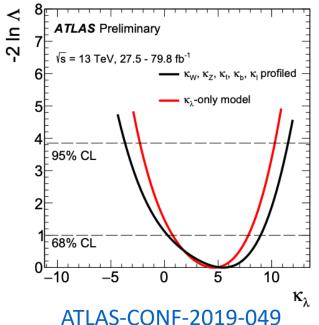
 κ_{λ} -only constraint at 95% C.L.: $-2.3 < \kappa_{\lambda} < 10.3$

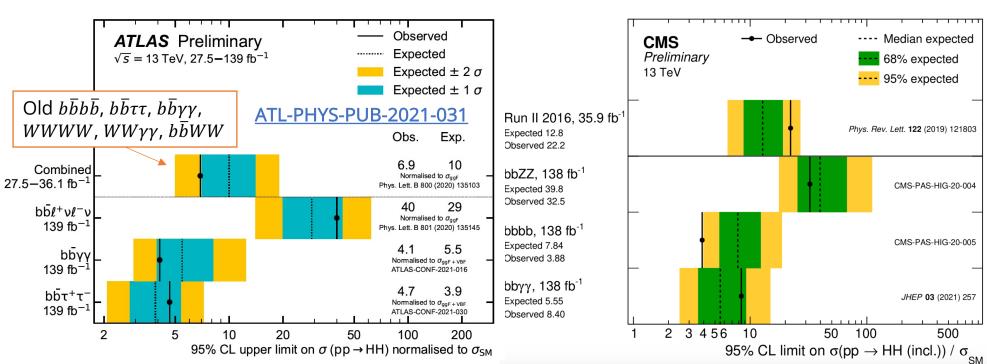

Generic model constraint at 95% $C.L.: -3.7 < \kappa_{\lambda} < 11.5$

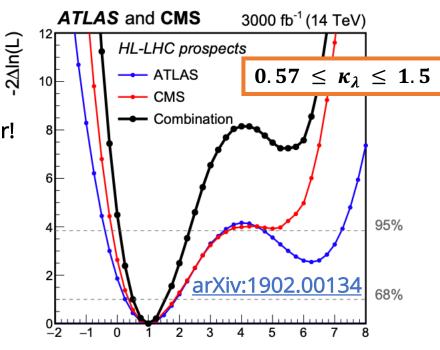

HH production signal strength result from *HH* analyses

Excluding at 95% C.L.: $\sigma_{qqF}(pp \rightarrow HH) > 6.9 \times SM$


Previous ATLAS H + HH combination


- > Partial Run2 combination of single-Higgs and double-Higgs analyses
- \triangleright Performed fit with only κ_{λ} floating and a generic fit with all coupling modifiers floating obtaining observed (expected) constraints on κ_{λ} at 95% *CL*:
 - κ_{λ} -only fit: $-2.3 (-5.1) < \kappa_{\lambda} < 10.3 (11.2)$
 - Generic fit: $-3.7 (-6.2) < \kappa_{\lambda} < 11.5 (11.6)$


$\kappa_W{}^{+1\sigma}_{-1\sigma}$	$\kappa_{Z}{}^{+1\sigma}_{-1\sigma}$	$\kappa_{t-1\sigma}^{+1\sigma}$	$\kappa_{b-1\sigma}^{+1\sigma}$	$\kappa_{ extit{lep}-1\sigma}^{+1\sigma}$	$\kappa_{\lambda}{}^{+1\sigma}_{-1\sigma}$	κ_{λ} [95% C.L.]
1	1	1	1	1	$4.6^{+3.2}_{-3.8}$	[-2.3, 10.3] Obs.
1	_	_	_	_	$1.0^{+7.3}_{-3.8}$	[-5.1, 11.2] Exp.
$1.03^{+0.08}_{-0.08}$	$1.10^{+0.09}_{-0.09}$	$1.00^{+0.12}_{-0.11}$	$1.03^{+0.20}_{-0.18}$	$1.06^{+0.16}_{-0.16}$	$5.5^{+3.5}_{-5.2}$	[-3.7, 11.5] Obs.
$1.00^{+0.08}_{-0.08}$	$1.00^{+0.08}_{-0.08}$	$1.00^{+0.12}_{-0.12}$	$1.00^{+0.21}_{-0.19}$	$1.00^{+0.16}_{-0.15}$	$1.0^{+7.6}_{-4.5}$	[-6.2, 11.6] Exp.



Other results and prospects

- > Many new results in different *HH* decay channels released in the last year! And more channels coming soon!!!
- > Improved limits with larger statistics and new MVA analysis techniques
- \gt{VBF} production mode now accessible and results on κ_{2V} released
- > Resonant *HH* limits improved with MVA boosted topology reconstruction
- > Prospects done scaling partial-Run2 results to High-Lumi statistics

Now finishing the last analyses and combinations

Then looking forward to Run3 and High-Lumi!!