

Measurements of the Higgs boson fiducial and differential cross sections in bosonic final states at the ATLAS experiment

> **A. Schaffer** IJCLab, Orsay, France and SMU, Dallas, USA

On behalf of the ATLAS Collaboration

ICHEP 7 July 2022

$H \rightarrow ZZ^* \rightarrow 4l$ (H4l) and $H \rightarrow \gamma\gamma$ ($H\gamma\gamma$) channels

- Report today on final Run 2 results the individual fiducial measurements:
 - H → 41 Eur. Phys. J. C 80 (2020) 942 Nov 2020
 - $H \rightarrow \gamma \gamma$ <u>Submitted to JHEP</u> Feb 2022
- * and their combination:
 - <u>CERN-EP-2022-143</u> *NEW*
- H4I and Hγγ are fully-resolved high-resolution Higgs decay channels
 - See refs for details of each channel

Inclusive and differential fiducial measurements

fiducial region: particle-level selection close to final selection

Higgs production in full phase space: hard scatter + parton shower

selected events at reconstructed level

- * Cross sections and kinematic distributions are measured in space defined by the detector acceptance (fiducial region)
 - Includes minimum physics assumptions
 - Allows for easy comparison of physics models today and in the future
 - Tradeoff some precision relative to reco-level measurements for "longevity" of data
- Measurements are corrected for detector response (unfolding)
 - Response matrix unfolding is included in the likelihood fit
 - past measurements used bin-by-bin
- ★ To combine two decay channels, e.g. H → 4l and H → $\gamma\gamma$, one must "correct"/"unfold" to the full phase space since fiducial regions are different (acceptance + BR)
 - Requires assumption on acceptance correction from fiducial to full phase space (acc ~50%)

But of course, combining the two results improves statistical precision
 7 July 2022

A word on "unfolding"

- To "extract" distributions in fiducial volume, one uses a response matrix R_{truth_reco} to map reco to truth accounting for bin migrations
- An important point is to adjust the "bin sizes" to limit bin migration in truth <-> reco
 - This limits the "inflation" of the statistical uncertainty in transformation of reco to truth
 - little migration for Higgs variables (p_T, decay, masses),
 - Iarger for jet-related due to resolution

Cross sections, distributions and interpretations

- * Most measurements are "inclusive" of production mode => dominated by ggF
- Total cross sections:
 - in fiducial phase space for H4I and H $\gamma\gamma$, total phase space for combined
- Common distributions H4l and Hγγ:
 - Higgs: p_T , |y|, p_T vs |y|, Jets: N_{jets} , N_{b-jets} , p_T^{j1} , VBF: m_{jj} , $|\Delta n_{jj}|$, $\Delta \phi_{jj}$
- Distributions specific to H4I:
 - Z masses: m12, m34, decay angles (masses most sensitive to BSM)
- Distributions specific to Hγγ:
 - $p_T^{\gamma 1}/m_{\gamma \gamma}$, $p_T^{\gamma 2}/m_{\gamma \gamma}$, additional 1-jet and 2-jet variables
 - Has fiducial phase spaces for VBF, VH and ttH
- * Interpretations:
 - H4I: anomalous couplings to H and Z (Pseudo Observables Framework)
 - Hyy: EFT constraints on Warsaw-basis couplings with $p_T\gamma\gamma$, N_{jets} , p_T^{j1} , m_{jj} , $\Delta \phi_{jj}$ distributions
 - Combined: constraints on c- and b-quark Yukawa couplings

7 July 2022

Inclusive and differential fiducial measurements

- Predictions for comparison: (see <u>HIGG-2019-13</u> for details)
 - ggF: (~90% of x-sec)
 - NNLOPS normalized to N3LO (default)
 - MG5 FxFx normalized to N3LO
 - HRes 2.3 normalized to N3LO
 - RadISH + NNLOJet, MATRIX+RadISH
 - SCETlib + MCFM8
 - Sherpa + MCFM + OpenLoops
 - Others production modes use state-of-the-art generators, and normalized to NNLO for VBF,VH and NLO for ttH,bbH

Iabelled: XH = VBF+WH+ZH+ttH+bbH (~10% of x-sec)

Normalizations all include EW corrections

Total cross sections

- * Total x-sec for H4I and Hyy in fiducial phase space, and
- Total combined x-sec is full phase space

13 TeV x-sec	Obs	uncert	SM	uncert	Obs/SM
H4l fid (fb)	3.28 ± 0.32	10 %	3.41 ± 0.18	5 %	0.96 ± 0.11
Hγγ fid (fb)	67 ± 6	9 %	64 ± 4	6 %	1.05 ± 0.11
Comb tot (pb)	55.5 ^{+4.0} -3.8	7 %	55.6 ± 2.8	5 %	1.00 ± 0.09

Higgs p_T - H4l and H $\gamma\gamma$ separately

✤ Higgs p_T probes the QCD modeling of the ggF production mechanism:

- low p_T: soft/collinear QCD emission (resummation)
- high p_T: H + ≥1 jet (Fixed order calc) can expect BSM effects at high p_T
- => jet diff distributions can help constrain calculations for Higgs p_T (see backup $p_T j^1$ vs $p_T j^2$)

Higgs p_T - combined

у_н (rapidity)

Probes PDFs and perturbative QCD modeling of the ggF production mechanism

7 July 2022

N_{jet} and $p_T^{leading jet}$

Jet distributions to test perturbative QCD modeling of the ggF production mechanism, and contributions of other production modes

Δφ_{jj} - asymmetry indicates CP-odd coupling

 $H\gamma\gamma$ - in VBF-specific fiducial phase space (m_{jj} > 600 GeV, $|\Delta y_{jj}|$ > 3.5)

NLOEW contributions to H4l decay

Leading lepton pair mass, m₁₂, is sensitive to NLOEW effects in decay (final state interactions) Affects 4µ or 4e decays (same flavor), but not 2µ2e or 2e2µ (opposite flavor) Expectations with <u>Prophecy4F</u> or <u>Hto4I</u> for decay (blue/green) compared to std (pink NNLOPS) Small preference in p-values for Prophecy4f/Hto4I 7 July 2022

BSM limits: m₁₂ vs m₃₄ Pseudo Observables

4

Constraints on b- and c-quark Yukawa couplings via pTH

Heavy quark production can be enhanced at low p_T^H due to interference between ggF and guark-initiated production (1606.09253)

Constrain Higgs couplings modifiers κ_c and κ_b with shape of the p_T^H distribution

(SM rate for c-guark is ~x400 smaller than for b-quarks)

×

Limit extraction relies on accuracy of QCD radiation estimates

Other tree-level couplings assumed to be SM

Can combine with VH(-> bb, cc) measurements - right plot

7 July 2022

Summary

- Final Run 2 results for fiducial cross sections and distributions are now available for H->ZZ*->41 and H->γγ decay channels, as well as their combination
 - allowing tests of the SM Higgs production and QCD modeling
- The combine Higgs production cross section is measured to be: 55.5 ± 3.2 (stat) +2.4-2.2 (sys) pb (SM: 55.6 ± 2.8 pb)
- Example interpretations for Pseudo-observables (H4I) and c- and b-quark couplings (combined) have been shown
- All measurements are statistics limited, indicating that precision will continue to improve with more data
- All measurements are compatible with the SM
 7 July 2022

BACKUP

Number of b-jets

Theory: fraction of events with b-jet: 3.5 ± 0.2 %

pTleading jet VS pTsubleading jet

EFT constraints with $H_{\gamma\gamma}$ differential distributions

Constraints ATLAS Observed 68% CL linear-only H→γγ, √s = 13 TeV, 139 fb⁻¹ Observed 95% CL Expected 68% CL SMEFT (interference only), $\Lambda = 1 \text{ TeV}$ Constraints on Wilson coefficients in Expected 95% CL c_{HG} [10⁻²] Warsaw basis (SMEFT) $C_H \tilde{G}$ с_{нõ} [10⁻¹] c_{HW} [10⁻²] Using distributions: $p_T \gamma \gamma$, N_{jets} , $p_T j^1$, m_{ji} , $\Delta \phi_{ji}$ $C_H \widetilde{W}$ $c_{H\tilde{W}} [10^{1}]$ с_{нв} [10⁻³] x-sec contain: $c_{H\widetilde{B}} [10^3]$ linear interference terms constraining CPc_{HWB} [10⁻²] odd couplings $c_{H\tilde{W}B} [10^2]$ quadratic terms constraining CP-even -2 -6 2 _4 couplings Constraints ATLAS Observed 68% CL $H \rightarrow \gamma \gamma$, $\sqrt{s} = 13 \text{ TeV}$, 139 fb⁻¹ Observed 95% CL CHG, CHGtil affect ggF x-sec linear + guadratic Expected 68% CL SMEFT (interference+quadratic), $\Lambda = 1$ TeV Expected 95% CL CHW, CHB, CHWB affect VBF/VH x-sec but $c_{HG} [10^{-3}]$ more importantly the $B\gamma\gamma$ c_{HG̃} [10⁻²] с_{нw} [10⁻²] $\Delta \varphi_{ii}$ is the sensitive distribution for CP-odd $c_{H\tilde{W}} [10^{-2}]$ constraints c_{HB} [10⁻²] $c_{H\tilde{B}} [10^{-2}]$ с_{нwв} [10⁻²] c_{н*щ*}[10⁻²] 10 20 30 -10-20

7 July 2022

Parameter value