

07.07.2022 ICHEP, Bologna

Higgs boson differential and STXS measurements in the fermionic channels

Sebastian Brommer for the CMS collaboration

Institut für Experimentelle Teilchenphysik (ETP), Fakultät für Physik

Fermionic differential & STXS measurements by CMS

- 1. $H \rightarrow bb$ (boosted ggH)
- 2. $H \rightarrow \tau\tau$ (differential)

10.1103/PhysRevLett.128.081805

3. $H \rightarrow TT (ggh, VBF, VH)$

<u>2204.12957</u>

Fermionic differential & STXS measurements by CMS

3

 ∞

$H \rightarrow bb$ (boosted ggH)

Selection of highly boosted events with jet $p_T > 450$ GeV into 6 categories based on the jet momentum

Discriminant: Jet mass after the application of soft drop (M_{SD})

 $\mu_{\text{incl}} = \left[3.7 \pm 1.2 \, (\text{stat})^{+0.8}_{-0.7} \, (\text{syst})^{+0.8}_{-0.5} \, (\text{theo}) \right]$

Additional measurement based on STXS binning

Data

(fb

CMS

137 fb-1 (13 TeV)

In total: 3 ggH STXS bins measured

Fermionic differential & STXS measurements by CMS

- 1. $H \rightarrow bb$ (boosted ggH)
- 2. $H \rightarrow \tau\tau$ (differential)

10.1103/PhysRevLett.128.081805

3. $H \rightarrow TT (ggh, VBF, VH)$

<u>2204.12957</u>

$\textbf{H} \rightarrow \textbf{TT} \ \textbf{Background} \ \textbf{Estimation}$

$H \rightarrow \textbf{TT} \ Differential \ Cross \ Section \ Measurement$

Differential measurement using four di-T pair final states

 $e\mu, e\tau_h, \mu\tau_h, \tau_h\tau_h$

The differential cross sections measured as a functions of

- 1. Higgs boson transverse momentum,
- 2. the jet multiplicity
- 3. transverse momentum of the leading jet

First differential measurement of $H \rightarrow \tau \tau$

Fermionic differential & STXS measurements by CMS

$H \rightarrow \tau\tau$ (VH) Measurement Overview

Categorization based on the vector boson decay mode

- 1 lepton (W \rightarrow ev, W \rightarrow µv)
- 2 lepton ($Z \rightarrow ee, Z \rightarrow \mu\mu$)

+ p_T of the vector boson

2D distributions using $m^{}_{_{\rm TT}}$ and $p^{}_{_{\rm T}}$ of the vector boson

$H \rightarrow \tau\tau$ (ggH,qqH) Measurement Overview

Four di-t pair final states $e\mu, et_h, \mu t_h, t_h t_h$ Event categorization is based on neural network (NN) multi-classification Measurement of **inclusive** and **STXS stage** signals

$H \rightarrow \tau \tau$ (ggH,qqH) Neural Network for Classification

Simple NNs with 2 hidden layers is **sufficient** for this classification task

$H \rightarrow \tau \tau$ (ggH,qqH) Neural Network for Classification

Simple NN with 2 hidden layers is **sufficient** for this classification task

15 input variables used, most important m_{π}, m_{vis}, m_{ii} (+ *correlations*)

	_						_
$p_{_{ m T}}(au_{_{ m 1}})$,		Variable	$\mu \tau_{\rm h}$	$e\tau_h$	$\tau_{\rm h} \tau_{\rm h}$	eμ	
$p_{\rm T}(\tau_{\rm o})$		$p_{\mathrm{T}}^{\mathrm{e},\mu, au_{\mathrm{h}}}$	\checkmark	\checkmark	\checkmark	\checkmark	
1 1 (2/		$p_{\mathrm{T}}^{\mathrm{e},\mu, au_{\mathrm{h}}}$	\checkmark	\checkmark	\checkmark	\checkmark	
$m_{_{ au au}}$.		$m_{\rm T}^{{\rm e},\mu}$	_	_	_	\checkmark	
#jets		$p_{\mathrm{T}}^{1.~\mathrm{Jet}}$	\checkmark	\checkmark	\checkmark	\checkmark	
#b-jets		$p_{\mathrm{T}}^{2. \mathrm{Jet}}$	\checkmark	\checkmark	\checkmark	\checkmark	
$p_{\rm T}(j_{\rm I})$		$N_{ m Jets}$	\checkmark	\checkmark	\checkmark	\checkmark	
	B	N _{b-Tag}	\checkmark	\checkmark	\checkmark	_	
m_{jj}	3.	m _{ij}	\checkmark	\checkmark	\checkmark	\checkmark	
		$\Delta \eta_{ m jj}$	\checkmark	\checkmark	\checkmark	\checkmark	
input	laye	$p_{ m T}^{ m jj}$	\checkmark	\checkmark	\checkmark	\checkmark	
[1.	$m_{ au au}$	\checkmark	\checkmark	\checkmark	\checkmark	
[2.	m _{vis}	\checkmark	\checkmark	\checkmark	\checkmark	
		$p_{\mathrm{T}}^{\mathrm{vis}}$	\checkmark	\checkmark	\checkmark	\checkmark	
		MELA output	\checkmark	\checkmark	\checkmark	\checkmark	
		Era	\checkmark	\checkmark	\checkmark	\checkmark	10
							1 12

$H \rightarrow \tau \tau$ (ggH,qqH) Neural Network for Classification

$\textbf{H} \rightarrow \textbf{TT} \ \textbf{Inclusive Results}$

 $\mu_{incl} = 0.82 (+0.11 - 0.10)$

p-value for compatibility of incl. with SM: 0.10 Correlation between μ_{ggH} and μ_{qqH} : -0.35

$\textbf{H} \rightarrow \textbf{TT} \, \textbf{STXS} \, \textbf{Results}$

STXS Stage 1.2 measurement performed in a total of 16 STXS bins

Up to 40% anticorrelation between VBF with less and two jets and similar ggH categories

No correlation between VH and ggH/qqH

In total: 8 ggH + 4 VBF + 4 VH STXS bins measured

$H \rightarrow \tau\tau \, STXS \, Results$

Summary

Two STXS measurements and one differential measurement in fermionic final states presented

- $H \rightarrow bb$ (boosted ggH)
- $H \rightarrow TT$ (differential)
- $H \rightarrow TT (ggh, VBF, VH)$

More results can be expected soon !

$H \rightarrow \tau \tau$ Results STXS Stage-1.2

138 fb⁻¹ (13 TeV)

 $\pm 1\sigma$ stat.

syst. theo. bbb.

tot.

6

8

10

stat.

-0.87 + 1.21 + 0.50 + 0.88 + 0.44 + 0.51-1.21 - 0.50 - 0.89 - 0.36 - 0.54

 $0.73 \substack{+0.69 \\ -0.66 } \substack{+0.42 \\ -0.41 } \substack{+0.41 \\ -0.21 } \substack{+0.30 \\ -0.22 } \substack{+0.22 \\ -0.41 }$

 $3.37 \stackrel{+1.23}{_{-1.13}} \stackrel{+0.49}{_{-0.49}} \stackrel{+0.67}{_{-0.66}} \stackrel{+0.80}{_{-0.64}} \stackrel{+0.43}{_{-0.44}}$

 $2.10 \begin{array}{c} +0.65 \\ -0.57 \end{array} \begin{array}{c} +0.40 \\ -0.26 \end{array} \begin{array}{c} +0.27 \\ +0.26 \end{array} \begin{array}{c} +0.41 \\ +0.19 \\ -0.26 \end{array}$

1.94 + 1.21 + 0.60 + 0.66 + 0.69 + 0.45-1.24 - 0.60 - 0.67 - 0.70 - 0.50

 $1.61 \substack{+0.78 \\ -0.65 } \substack{+0.54 \\ -0.53 } \substack{+0.19 \\ -0.18 } \substack{+0.49 \\ -0.23 } \substack{+0.25 \\ -0.25 }$

 $0.05 \substack{+0.88 \\ -1.53 } \substack{+0.25 \\ -0.25 } \substack{+0.61 \\ -0.66 } \substack{+0.45 \\ -1.27 } \substack{+0.36 \\ -0.46 }$

 $1.49 + 0.67 + 0.41 + 0.27 + 0.43 + 0.20 \\ -0.56 - 0.41 - 0.25 - 0.22 - 0.19$

12

i rili i i li ri

14

16

$H \rightarrow \tau \tau$ Results STXS Stage-1.2

ggH

18 Parameter value

138 fb⁻¹ (13 TeV)

CMS

138 fb⁻¹ (13 TeV)

$H \rightarrow \tau \tau STXS Results$

CMS

Simplified Template Cross Section Scheme

During Run I, CMS, ATLAS and theorists started an effort to coordinate differential measurements between experiment and theory

- Common scheme of phase space regions
- Reduced dependence on theory / model uncertainties
- Designed for measurement of cross sections rather than signal strengths

Tau decays

The tau lepton is the only lepton heavy enough (1.7 GeV) to decay into hadrons

Tau leptons decay into

- 65% Pions and Kaons (hadronic decay τ_b)
- 35% Electrons and Muons

+ neutrinos

In **di-tau** analyses, this results in **six** final states, of which **four** are used in the analysis

Tau Tagging: DeepTau

DeepTau is a **deep neural network** (DNN) used to **discriminate** T_h against **electrons**, **muons** and **jets** within a single architecture [2201.08458]. Two types of input features:

- High-level variables like T_h momentum, charge, number of charged particles used to reconstruct the T_h, or isolation variables
- Low-level variables of PF candidates in a grid around the τ_h axis, split into inner and outer cells.

Improvement between 10%-30% in efficiency at identical misidentification probability

Stage-O Signal Extraction

For the stage-0 measurement, a 2D discriminator constr

Compatibility of the results

No era dependence visible

 $e_{h}, \mu_{h}, \pi_{h}, \pi_{h}$ are fully compatible with the combined result

eµ shows a ~2 σ deviation ²⁰¹⁶ from the combined result

no add. leptons

F_F Method

 F_F method is a sideband region method used to estimate contributions from QCD, W+Jets and tt production where a T_h is misidentified as a jet

Determine F_F for QCD by dividing the contributions of QCD events in the determination region in the tight and !tight && loose region

F_F Method

 F_{F} method is a sideband region method used to estimate contributions from QCD, W+Jets and tt production where a T_{h} is misidentified as a jet

Determine the total F_F from weighted average of the individual F_F based on their yield in the AR

F_F Method

 F_F method is a sideband region method used to estimate contributions from QCD, W+Jets and tt production where a T_h is misidentified as a jet

Determine contribution from τ_h misidentified as jets by multiplying the total F_F with the total number of events in the AR

