Higgs Physics at the LHeC and FCC-eh

on behalf of the LHeC & FCC-eh Study Group

> Bologna, July 8th ICHEP 2022

SM Higgs Production in DIS ep

Total cross section [fb] (LO QCD CTEQ6L1 M_{H} =125 GeV)

c.m.s. energy	1.3 TeV LHeC	3.5 TeV FCC-eh
CC DIS NC DIS	109 21	560 127
P=-80% CC DIS NC DIS	196 25	1008 148

 \rightarrow In ep, direction of quark (FS) is well defined.

SM Higgs Production in DIS ep

NC : LO SM Higgs Production

Total cross section [fb] (LO QCD CTEQ6L1 M_H=125 GeV)

c.m.s. energy	1.3 TeV LHeC	3.5 TeV FCC-eh
CC DIS NC DIS	109 21	560 127
P=-80% CC DIS NC DIS	196 25	1008 148

•*Scale* dependencies of the LO calculations are about 5-10%. Tests done with MG5 and CompHep.

• NLO QCD corrections are small, but shape distortions of kinematic distributions up to 20%. QED corrections up to -5%. [J. Blumlein, G.J. van Oldenborgh , R. Ruckl, Nucl.Phys.B395:35-59,1993] [B.Jager, arXiv:1001.3789]

Theory well under control in ep! LHeC will deliver N³LO PDFs, m_c to 3 MeV, m_b to 10 MeV and α_s to ~0.1-0.2%

 \rightarrow In ep, direction of quark (FS) is well defined.

<u>Concurrent</u> eh and hh operation with same running time!

Genuine Twin Collider idea holds for LHC and FCC-hh.

Using energy recovery in same structure: sustainable technology with power consumption < 100 MW instead of 1 GW for a conventional LINAC.

Beam dump: no radioactive waste!

LHeC [FCC-eh] L= 1000 [2000] fb⁻¹ in 10 [20] years
 <u>'No' pile-up</u>: <0.1@LHeC; ~1@FCCeh

CDR update J. Phys. G 48 (2021) 11, 110501 [arXiv:2007.14491]

<u>Concurrent</u> eh and hh operation with same running time!

Genuine Twin Collider idea holds for LHC and FCC-hh.

eh : ERL-electrons + LHC [FCC-hh]

- Using energy recovery in same structure: sustainable technology with power consumption < 100 MW instead of 1 GW for a conventional LINAC.
 - Beam dump: no radioactive waste!

- LHeC [FCC-eh] L= 1000 [2000] fb⁻¹ in 10 [20] years
 - 'No' pile-up: <0.1@LHeC; ~1@FCCeh</pre>

CDR update J. Phys. G 48 (2021) 11, 110501 [arXiv:2007.14491]

Kinematic Distributions at FCC-eh

Higgs decay particles (here to W*W), struck quark and scattered lepton are well separated in detector acceptance.

Higgs in eh: *cut* based results

Exam	ple of samples:	Un	polarised	ed (P=0) samples E _e =60 GeV				
	E _p =7 TeV	LHe	С		E _p =50 TeV	FC	С	
		σ (pb)	Nsample	N/σ(fb ⁻¹)		σ (pb)	Nsample	N/ σ (fb ⁻¹)
	Signal CC:H->bb	0.113	0.2M	1760	Signal CC:H->bb	0.467	0.15M	321
	CCjjj no top	4.5	2.6M	570	CCjjj no top	21.2	1.95M	92
	CC single top	0.77	0.9M	1160	CC single top	9.75	1.05M	108
	CC Z	0.52	0.6M	1160	CC Z	1.6	0.15M	94
	NC Z	0.13	0.15M	1140	NC Z	0.33	0.15M	455
	PAjjj	41	14M	350	PAjjj	262	12.9M	49

Masahiro Tanaka, Masahiro Kuze, Tokyo Tech 2017/2018 See also M Schott@Off-shell 2021, Hbb in ep using ATLAS software

MadGraph and Delphes ep-style detector

+ flat parton-level b-tagging

for |n|<3.0

conservative HFL tagging:

b: 60%, c: 10%, **udsg: 1%**

CAL coverage $|\eta| < 5$ LHeC [<6 FCC-eh]

Mass of 2 b-jets after event selection

using *conservative* light quark misID and simple cuts

 \checkmark confirmed in multiple post CDR studies

Note: 100 fb⁻¹ ~ 1 year of data w/o electron polarisation

Hunting for Precision Hbb : **BDT** based

Dijet Mass Candidates HFL untagged at Delphes detector level

Higgs in ep – clean S/B, no pile-up

WW to Higgs to W*W to 4 jets

- CC DIS Higgs production and decay to W^{*}W gives direct access to g⁴_{HWW} assuming no NP in production and decay
- \rightarrow important process: allows *nearly direct* access to g_{HWW} and $\delta g_{HWW} = 1/4\delta \mu/\mu$ (H \rightarrow W*W)

New study for **FCC-eh** at 3.5 TeV: [arXiv:2007.14491] Signal and Background generated by MG5+Pythia using BR(H \rightarrow WW)=21.5% and 67% for W \rightarrow jj decay: σ =100 fb ~45% of σ (HWW)

- passed thru FCC-eh Delphes detector
- background processes dominated by CC
 DIS multijets, top and single H,W, Z + jets
 (4th + more jets from shower)
- → various anti-kt R choices studied for the resolved case: all 4 jets reconstructed

 \rightarrow optimal choice R=0.7

Note: more event categories and decay modes could be added a la LHC-style studies

NO mass requirements in combinatorics!

120

140

M_{inv} [GeV]

$H \rightarrow WW^*$ analysis strategy & results

200 150 100 50 20 60 80 40 100

Events 250

Reconstructed W*, W and Higgs, after jet combinatorics based on selecting at least 5 jets with **p**_T > 6 GeV and finding the higgs candidate which has two jet pairs with min $\Delta \eta$, and max $\Delta \eta$ between Higgs and fwd jet, and max $\Delta \phi$ between Higgs and ETmiss or Higgs and fwd jet \rightarrow passed to BDT

Higgs_{comb} on-shell W_{comb}

off-shell W_{comb}

Acceptance x efficiency of 20% and purity of 68% that true forward jet is identified for pre-selected events \succ

- HWW signal strengths of 1.9 to 2.5% reached depending on background assumptions and pre-selection & BDT details \succ
- very nice results expected for δg_{HWW} of 0.5 to 0.6% from this channel only

SM Higgs Signal Strengths $\delta\mu/\mu$ in ep

δμ/μ [%]

Charged Currents: $ep \rightarrow vHX$ Neutral Currents: $ep \rightarrow eHX$

NC and CC DIS together over-constrain Higgs couplings in a combined SM fit.

 $E_e = 60 \text{ GeV}$ LHeC $E_p = 7 \text{ TeV}$ L=1ab⁻¹ HE-LHC $E_p = 14 \text{ TeV}$ L=2ab⁻¹ FCC: $E_p = 50 \text{ TeV}$ L=2ab⁻¹

Stand-alone ep k *Coupling* Fits

in ePb for

FCC-eh

Assuming SM branching fractions weighted by the measured κ values, and Γ_{md} (c.f. CLIC model-dependent method) see e.g. [arXiv:1608.07538]

Very high precision due to CC+NC DIS in clean environment in luminous, energy frontier ep scattering

* see also backup slide

Interplay EW/Higgs at future colliders

Couplings and correlations

J de Blas at FCC WS 2020

See also Talk by Sally Dawson@DIS21, p13 Higgs at future colliders; Tables in backup & [arXiV: 1905.03764]

eh resolves HWW-HZZ correlation, see line marked with X on left plot, and reduces further correlations

> Higgs measurements in the three collider modes ee, ep, pp are also important for theory development

Wrap Up

- LHeC and FCC-eh could measure the dominant Higgs couplings, including ttH, to high precision [CC+NC DIS, no pile-up, clean final state..]
- Higgs measurements in ep are *self consistent,* experimentally and theoretically, based on DIS cross sections with very small systematic uncertainties.
- Striking synergy of ep (>~1 TeV) and ee (250-350 GeV) and pp for Higgs coupling measurements, to remove also HZZ and HWW and further correlations!
- Energy frontier ep would empower the physics potential of pp (non-resonant searches, EW, Higgs..) through high precision QCD measurements: flavour separated PDFs at N³LO, α_s to per mille ...

Combining pp with ep, a very powerful Higgs facility can be established at the HL-LHC already in the 30ties and later at the FCC eh+hh.

Additional Sources & Thanks to

@ ICHEP2022 Talks/Posters:

- Parton structure Claire Gwenlan, Thu 07/07 10.30am
- eA and small x Néstor Armesto, Thu 07/07 12.25pm
- Overview Bernhard Holzer, Thu 07/07 2.45pm
- PERLE Walid Kaabi, Thu 07/07 3.05pm
- Top and EW Daniel Britzger, Fri 08/07 6.30pm
- eh/hh IR and detector poster, Fri 08/07 7.05pm
- BSM Oliver Fischer, Sat 09/07 5.30pm
- @FCC Week 2021: https://indico.cern.ch/event/995850/

Project status, LHeC and FCC-eh Detector Status [https://indico.cern.ch/event/995850/contributions/4420316/], physics news

@IAS HL-LHC Upgrade and LHeC Option by O Bruening: https://indico.cern.ch/event/971970/contributions/4174477/ CDR Update [arXiv:2007.14491]

- "On the Relation of the LHeC and the LHC" [arXiv:1211.5102]
- FCC to EU Strategy CERN-ACC-2018-0056
- LHeC to EU Strategy CERN-ACC-2018-0084
- Higgs branching fractions and uncertainties taken from https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR
- Special thanks to my colleagues in the LHeC/FCC-eh study group and

to Jorge de Blas for the discussion of model-dependent coupling fits.

Additional material

HL-LHC and LHeC

- Combined -

Parameter	Uncertainty				
	HL-LHC	LHeC	HL-LHC+LHeC		
κ_W	1.7	0.75	0.50		
κ_Z	1.5	1.2	0.82		
κ_{g}	2.3	3.6	1.6		
κ_{γ}	1.9	7.6	1.4		
$\kappa_{Z\gamma}$	10	_	10		
κ_c	_	4.1	3.6		
κ_t	3.3	_	3.1		
κ_b	3.6	2.1	1.1		
κ_{μ}	4.6	_	4.4		
$\kappa_{ au}$	1.9	3.3	1.3		

Table 9.5: Results of the combined HL-LHC + LHeC κ fit. The output of the fit is compared with the results of the HL-LHC and LHeC stand-alone fits. The uncertainties of the κ values are given in per cent.

Process	$\sigma_H \; [\text{pb}]$	$\Delta \sigma_{\rm scales}$	$\Delta \sigma_{\rm PDF+\alpha_s}$	
			HL-LHC PDF	LHeC PDF
Gluon-fusion	54.7	5.4%	3.1%	0.4%
Vector-boson-fusion	4.3	2.1%	0.4%	0.3%
$pp \rightarrow WH$	1.5	0.5%	1.4%	0.2%
$pp \rightarrow ZH$	1.0	3.5%	1.9%	0.3%
$pp \to t\bar{t}H$	0.6	7.5%	3.5%	0.4%

Table 9.4: Predictions for Higgs boson production cross sections at the HL-LHC at $\sqrt{s} = 14$ TeV and its associated relative uncertainties from scale variations and two PDF projections, HL-LHC and LHeC PDFs, $\Delta \sigma$. The PDF uncertainties include uncertainties of $\alpha_{\rm s}$.

Rates and Geometric acceptances

Higgs in ee vs ep

ee Dominant Higgs productions:

Higgs @ HL-LHC, ee and FCC-eh

vithin kappa framework; statistical errors only to explore the synergy fully					FCC-eh		
Collider	HL-LHC	ILC_{250}	CLIC ₃₈₀		FCC-ee		FCC-eh
Luminosity (ab^{-1})	3	2	0.5	5@	+1.5 @	+	2
				240 GeV	365 GeV	HL-LHC	
Years	25	15	7	3	+4		20
$\delta\Gamma_{ m H}/\Gamma_{ m H}$ (%)	SM	3.8	6.3	2.7	1.3	1.1	SM
$\delta g_{\mathrm{HZZ}}/g_{\mathrm{HZZ}}$ (%)	1.3	0.35	0.80	0.2	0.17	0.16	0.43
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	1.4	1.7	1.3	1.3	0.43	0.40	0.26
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	2.9	1.8	2.8	1.3	0.61	0.55	0.74
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	6.8	1.7	1.21	1.18	1.35
$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	1.8	2.2	3.8	1.6	1.01	0.83	1.17
$\delta g_{\mathrm{H} au au}/g_{\mathrm{H} au au}$ (%)	1.7	1.9	4.2	1.4	0.74	0.64	1.10
$\delta g_{ m H\mu\mu}/g_{ m H\mu\mu}$ (%)	4.4	13	n.a.	10.1	9.0	3.9	n.a.
$\delta g_{\mathrm{H}\gamma\gamma}/g_{\mathrm{H}\gamma\gamma}$ (%)	1.6	6.4	n.a.	4.8	3.9	1.1	2.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	2.5		_	_	_	2.4	ttH 1.7
BR _{EXO} (%)	SM	< 1.8	< 3.0	< 1.2	< 1.0	< 1.0	n.a.

→ Combine the complementary measurements for best physics outcome!

→ FCC-hh will be the machine to pin down HH and all rare decays!

Higgs-inv.: 1.2% HH ~20%

Consistency Checks of EW Theory

 \rightarrow similar tests possible using various cms energy CLIC machines, see e.g. [arXiv:1608.07538], however, in ep, we could perform them with one machine

$$\frac{\sigma_{WW \to H \to ii}}{\sigma_{ZZ \to H \to ii}} = \frac{\kappa_W^2}{\kappa_Z^2}$$

$$\frac{\kappa_W}{\kappa_Z} = \cos^2 \theta_W = 1 - \sin^2 \theta_W$$

- → Dominated by H→ bb decay channel precision
- Very interesting consistency check of EW theory

Values for cos²Θ given here are the PDG value as central value 0.777 and uncertainty from ep Higgs measurement prospects

LHeC:	± 0.010
HE-LHeC	± 0.006
FCC-eh	± 0.004

➔ Another nice test: How does the Higgs couple to 3rd and 2nd generation quark? b is down-type and c is up-type

$$\frac{\sigma_{WW \to H \to c\bar{c}}}{\sigma_{WW \to H \to b\bar{b}}} = \frac{\kappa_c^2}{\kappa_b^2}$$

Top Yukawa Coupling @ LHeC ⁵

B.Coleppa, M.Kumar, S.Kumar, B.Mellado, PLB770 (2017) 335

SM:
$$\mathcal{L}_{\text{Yukawa}} = -\frac{m_t}{v}\bar{t}th - \frac{m_b}{v}\bar{b}bh$$
,

BSM: Introduce phases of top-Higgs and bottom-Higgs couplings

 $\mathcal{L} = -\frac{m_t}{v} \bar{t} \left[\kappa \cos \zeta_t + i\gamma_5 \sin \zeta_t\right] t h$ $-\frac{m_b}{v} \bar{b} \left[\cos \zeta_b + i\gamma_5 \sin \zeta_b\right] b h.$

Observe/Exclude non-zero phase to better than 4o

→ With Zero Phase: Measure **ttH c**oupling with 17% accuracy at LHeC → extrapolation to FCC-eh: **ttH to 1.7%**

74

h

 W^{+}

Branching for invisible Higgs

Values given in case of 2σ and L=1 ab⁻¹

Delphes detectors	LHeC [HE-LHeC] 1.3 [1.8 TeV]	FCC-eh 3.5 TeV
LHC-style	4.7% [3.2%]	1.9%
First 'ep-style'	5.7%	2.6%
+BDT Optimisation	5.5% (4.5%*)	1.7% (2.1%*)

LHeC parton-level, cut based <6% [Y.-L.Tang et al. arXiv: 1508.01095]

Satoshi Kawaguchi, Masahiro Kuze Tokyo Tech

PORTAL to Dark Matter ?

- ✓ Uses ZZH fusion process to estimate prospects of Higgs to invisible decay using standard cut/BDT analysis techniques
- ✓ Full MG5+Delphes analyses, done for 3 c.m.s. energies → very encouraging for a measurement of the branching of Higgs to invisible in ep down to 5% [1.2%] for 1 [2] ab⁻¹ for LHeC [FCC-eh]
- ✓ <u>A lot of checks done:</u> We also checked LHeC ← → FCC-he scaling with the corresponding cross sections (* results in table): Downscaling FCC-he simulation results to LHeC would give 4.5%, while up-scaling of LHeC simulation to FCC-he would result in 2.1% → all well within uncertainties of projections of ~25%

→ further detector and analysis details have certainly an impact on results → enhance potential further

Double Higgs Production

Encouraging FCC-eh cut-based study; full Delphes-detector simulation; conservative HFL tagging

FCC-eh g_{HHH} ~ 20% in ep

 $g^{(1)}_{\scriptscriptstyle hhh}$

Probing anomalous couplings within Higgs EFT: limits are obtained by scanning one of the non-BSM coupling while keeping other couplings to their SM values.

 $1.00^{+0.24(0.14)}$

Here $g_{(\dots)}^{(i)}$, i = 1, 2, and $\tilde{g}_{(\dots)}$ are real coefficients corresponding to the CP-even and CP-odd couplings respectively, of the *hhh*, *hWW* and *hhWW* anomalous vertices.

Bands show the still allowed regions.