$H \rightarrow ZZ^*, H \rightarrow \gamma\gamma, H \rightarrow WW^*$ Coupling measurements and interpretations at the ATLAS experiment

Davide Mungo on behalf of the ATLAS Collaboration

University of Toronto

7 July 2022

HIGGS DECAYS TO VECTOR BOSONS

Presented here will be the latest Run2 coupling analyses from ATLAS:

- $H \rightarrow ZZ^*$ (2020) <u>HIGG-2018-28</u> published on EPJC
- $H \rightarrow \gamma \gamma$ (2022) **NEW** <u>HIGG-2020-16</u> submitted to JHEP
- ggH/VBF $H \rightarrow WW^*$ (2022) **NEW** <u>HIGG-2021-20</u> submitted to PRD

Other interesting ATLAS coupling measurements and EFT results today

 $H \rightarrow ff$ coupling H coupling combination EFT interpretation Analysis methods <u>Giulia</u> and <u>Robert</u> <u>Zirui</u> <u>Sandra</u> Stephen

D. MUNGO (UNIVERSITY OF TORONTO)

STXS framework and interpretations

Established framework for Higgs coupling measurement

STXS: Simplified Template X-Sections

- Measure production cross sections in well-defined fiducial regions
- Less model dependent with respect to inclusive measurement
- Provide some sort of unfold of detector-level effects

Interpretations: Standard Model Effective Field Theory (SMEFT) or κ -framework (see backup)

■ Modify tensor structure of the SM with dimension-6 operators O_i^6

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}$$

 Parametrize STXS bin cross sections in terms of the Wilson coefficients c_i

$$\sigma_{\text{SMEFT}} \propto |\mathcal{M}_{\text{SMEFT}}|^{2} =$$

$$= |\mathcal{M}_{\text{SM}}|^{2} + \sum_{i} 2\text{Re} \left(\mathcal{M}_{\text{SM}}^{*}\mathcal{M}_{i}\right) \frac{\mathsf{c}_{i}}{\Lambda^{2}} + \sum_{ij} 2\text{Re} \left(\mathcal{M}_{i}^{*}\mathcal{M}_{i}\right) \frac{\mathsf{c}_{i}\mathsf{c}_{j}}{\Lambda^{4}}$$

$$\propto \sigma_{SM}^{\text{STXS}} \left(1 + \sum_{i} \mathcal{A}_{i}\mathsf{c}_{i} + \sum_{ij} B_{ij}\mathsf{c}_{i}\mathsf{c}_{j}\right)$$

(Example from $H \to ZZ^* \to 4\ell$ analysis)

$H ightarrow 4\ell$ analysis strategy

Main characteristics:

- Higgs decay fully reconstructed, access to Higgs kinematic
- Clean final state and excellent peak resolution
- High S/B ratio but mostly **limited** by signal **statistic**

Strategy: fit various NN binned outputs

Event selection:

- Two same-flavor opposite-charged lepton pairs (e, μ)
- Signal region 115 < $m_{4\ell}$ < 130 GeV, sideband for background constraint

Improve $m_{4\ell}$ reconstruction

- Recovering FSR photons
- If > 4 leptons, selected quadruplet with ME discriminant
 - important for VH and ttH production modes

D. MUNGO (UNIVERSITY OF TORONTO)

$H ightarrow 4\ell$ categorization

Expected Composition

Dedicated NN trained for almost all categories

- NN combines an "event" NN + up to 2 "objects" RNNs (for leptons or for jets)
- NN output discriminates between two or three processes
 - examples: ggF-vs-ZZ or ggF-vs-VBF-vs-ZZ
- Bin boundaries chosen to maximize significance

Preselection using mostly rectangular cuts

- N_{jets}, p_T^{4ℓ}, m_{jj} following STXS bin boundaries
- event selection starting from low cross sections production modes

Main characteristics:

- Higgs decay fully reconstructed, access to Higgs kinematics
- Clean final state and excellent resolution
- **Larger background** compared to $H \rightarrow 4\ell$
 - but robust data-driven subtraction
- **Strategy:** fit $m_{\gamma\gamma}$ shape and normalization
- Fully **analytical** signal+background **model Event selection:**
 - 2 well reconstructed and identified photons
 - Signal region $105 < m_{\gamma\gamma} < 160 \, {
 m GeV}$

Unified optimization technique targeting almost full STXS 1.2 scheme (45 bins) simultaneously

- Multiclass BDT to separate STXS signal bins
- Weight multiclass 45 outputs to optimize |*C*_{STXS}| of the STXS measurement
- "S-vs-B" binary BDTs for each region to reject bkg
 - additional NN for *tHjb* to separate $\kappa_t = \pm 1$ signals

$ggH/VBF \; H ightarrow WW^* ightarrow e u \mu u$ analysis strategy

Main characteristics:

- Worse resolution due to 2ν , but high signal yield
- Complex set of backgrounds with large uncertainties

Strategy: target only ggH and VBF

- **ggH** regions: fit m_T observable
- VBF regions: fit DNN discriminant output

Event selection:

Two leptons different-flavor opposite-charged

 exploit small opening angle between signal leptons to suppress WW bkg

Specific selections for each N_{jet} analysis category, different background compositions

•
$$N_{jets} = 0, N_{jets} = 1, N_{jets} \ge 2 \text{ (ggH)}, N_{jets} \ge 2 \text{ (VBF)}$$

Cut based selection to reduce dominant backgrounds

- invert/additional selections to create specific CRs
- targeted *WW*, top, Z/γ^*

$ggH/VBF H \rightarrow WW^* \rightarrow e\nu\mu\nu$ categorization

10.87.11

10.77,0.831 10.83,0.87

DNN output

optimized for different measurement scheme

> ■ inclusive ggF/VBF ggF sub-regions split in $m_{\ell\ell}$ and $p_{\rm T}^{\rm sublead-\ell}$

UST RELEASED!

- STXS measurement: $p_{\rm T}^H \sim p_{\rm T}^{\ell \ell E_{\rm T}^{miss}}$ and m_{ii}
- VBF DNN bin boundaries are optimized in both cases

Other H

ATLAS

√s = 13 TeV, 139 fb⁻¹

6000

10.25,0.521 10.52,0.681 10.68,0.771

3.0.251

Inclusive and cross section results

Good agreement with SM predictions so far

- $\sim 10\%$ relative uncertainty on **inclusive** measurement for all the channels
- $H \to ZZ^*$ stat-limited, $H \to WW^*$ syst-limited
- $\blacksquare\,$ ggH known at \sim 10%, VBF at \lesssim 30%
- $\sigma_{
 m tH}^{\gamma\gamma} < 10$ (6.8) $imes \sigma_{
 m SM}$ at 95% CL
 - $H \rightarrow \gamma \gamma$ excludes negative κ_t at 2.2 σ
 - in case of unresolved loop (see backup)

STXS measurements

D. MUNGO (UNIVERSITY OF TORONTO)

EFT INTERPRETATION

EFT interpretation carried out in $H \rightarrow ZZ^*$ and $H \rightarrow \gamma\gamma$ channels

Considered both linear and quadratic modification terms to the cross section

Both channels provide results with one Wilson coefficient varied at a time. Moreover

- $H \rightarrow ZZ^*$ simultaneous variation of two coefficients (see backup)
- $H \rightarrow \gamma \gamma$ full simultaneous fit, via PCA

$H \rightarrow ZZ^*$ EFT interpretation: test 10 different operators

Important analysis acceptance

corrections

CP-even operators

CP-odd operators

Single c_i results compatible with SM

Tested 34 different operators

- not enough information in STXS measurement to constrain each of them
- multiple operators contribute to same STXS bin
- \Rightarrow **P**rincipal Component Analysis
 - Identify eigenvectors of $C_{\text{SMEFT}}^{-1} = P^T C_{\text{STXS}}^{-1} P$
 - Align measurement parameters to eigenvectors
 - Perform fit to not-flat directions only

▶ 12 directions remaining ($\lambda_n > 0.005$)

ATLAS (s=13 TeV 139fb⁻¹; H->y)

ATLAS Vs=13 TeV 139th⁻¹ H-+vv: SMEET Interpretation: A=1 TeV

EV12

2.6+12.0

1.2,10

After 10 years, $H \rightarrow ZZ^*$, $H \rightarrow \gamma\gamma$, $H \rightarrow WW^*$ continue to provide great insights into Higgs boson production

Presented latest Run 2 results for production mode and STXS cross sections measurements

- All presented measurements show good agreement with the SM expectation
 - $\blacktriangleright\,$ Inclusive cross section known at 10%, ggF at 10% and VBF at $\lesssim 30\%$
 - ggH/VBF STXS bins measured at \lesssim 50%, differential ttH in $H \rightarrow \gamma \gamma$
 - Excluded negative κ_t at 2.2 σ directly from tH
- Performed SM Effective Field Theory interpretation, no signs of deviation observed
- Most of the measurements presented are still statistically limited

Looking at future, the Run3 dataset will still be a joyful playground for these channels

BACKUP

Consistent treatment of production and decay processes $\Rightarrow \kappa$ modifiers Basic assumptions:

- No additional Higgs boson decays beyond SM
- **Narrow width** approximation \Rightarrow decoupling of production and decay processes

$$\sigma_i imes \mathrm{BR}^f = rac{\sigma_i(oldsymbol{\kappa}) imes \Gamma^f(oldsymbol{\kappa})}{\Gamma_H}$$

with κ defined as

$$\kappa_j^2 = \frac{\sigma_j}{\sigma_j^{\text{SM}}} \quad \text{or} \quad \kappa_j^2 = \frac{\Gamma_j}{\Gamma_j^{\text{SM}}}$$

Best available SM predictions when all $\kappa_i = 1$, high order accuracy lost when $\kappa_i \neq 1$

For loop processes ggH and $H\to\gamma\gamma$ two possibilities:

• effective couplings κ_g and κ_γ

resolved parametrization with κ_t , κ_b and κ_W

The \mathbf{ggZH} loop is always treated as $\mathbf{resolved}$

$H \rightarrow ZZ^*$

Category	Processes	MLP	Lepton RNN	Jet RNN	Discriminant
$0j-p_{\rm T}^{4\ell}$ -Low $0j-p_{\rm T}^{4\ell}$ -Med	ggF, ZZ^*	$p_{\rm T}^{4\ell}, D_{ZZ^*}, m_{12}, m_{34},$ $ \cos \theta^* , \cos \theta_1, \phi_{ZZ}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	-	NN _{ggF}
$1j-p_{\mathrm{T}}^{4\ell}$ -Low	ggF, VBF, ZZ^*	$p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T}}^{j}, \eta_{j}, \ \Delta R_{4\ell j}, D_{ZZ^{*}}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	-	NN_{VBF} for $NN_{ZZ} < 0.25$ NN_{ZZ} for $NN_{ZZ} > 0.25$
$1j - p_{\mathrm{T}}^{4\ell}$ -Med	ggF, VBF, ZZ^*	$p_{\mathrm{T}}^{4\ell},p_{\mathrm{T}}^{j},\eta_{j},E_{\mathrm{T}}^{\mathrm{miss}},\ \Delta R_{4\ell j},D_{ZZ^{*}},\eta_{4\ell}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	-	NN_{VBF} for $NN_{ZZ} < 0.25$ NN_{ZZ} for $NN_{ZZ} > 0.25$
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -High	ggF, VBF	$p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T}}^{j}, \eta_{j}, \ E_{\mathrm{T}}^{\mathrm{miss}}, \Delta R_{4\ell j}, \eta_{4\ell}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	-	NN _{VBF}
2 <i>j</i>	ggF, VBF, VH	$m_{jj}, p_{\mathrm{T}}^{4\ell j j}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	$p_{\mathrm{T}}^{j},\eta_{j}$	NN_{VBF} for $NN_{VH} < 0.2$ NN_{VH} for $NN_{VH} > 0.2$
2j-BSM-like	ggF, VBF	$\eta_{ZZ}^{ ext{Zepp}}, p_{ ext{T}}^{4\ell j j}$	$p_{\mathrm{T}}^{\ell}, \eta_{\ell}$	$p_{\mathrm{T}}^{j},\eta_{j}$	NN _{VBF}
VH-Lep-enriched	VH, ttH	$N_{ m jets},N_{b ext{-jets},70\%},\ E_{ m T}^{ m miss},H_{ m T}$	p_{T}^{ℓ}	-	NN _{ttH}
ttH-Had-enriched	ggF, ttH, tXX	$p_{\mathrm{T}}^{4\ell}, m_{jj},$ $\Delta R_{4\ell j}, N_{b\text{-jets},70\%},$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	$p_{\mathrm{T}}^{j},\eta_{j}$	NN_{ttH} for $NN_{tXX} < 0.4$ NN_{tXX} for $NN_{tXX} > 0.4$

Dominant systematic uncertainties

	Experimental uncertainties [%]			Theory uncertainties [%]					
Measurement	T	e, µ,	Jets,	, Reducible Background		ground	Signal		
	Lumi.	pile-up	flav. tag	bkg	ZZ^*	tXX	PDF	QCD	Shower
			Inclusive	e cross-sectio	n				
	1.7	2.5	0.5	< 0.5	1	< 0.5	< 0.5	1	2
		Pr	oduction m	node cross-se	ctions				
ggF	1.7	2.5	1	< 0.5	1.5	< 0.5	0.5	1	2
VBF	1.7	2	4	< 0.5	1.5	< 0.5	1	5	7
VH	1.9	2	4	1	6	< 0.5	2	13.5	7.5
ttH	1.7	2	6	< 0.5	1	0.5	0.5	12.5	4
	F	Reduced S	tage-1.1 pr	oduction bin	cross-se	ctions			
$gg2H-0j-p_T^H$ -Low	1.7	3	1.5	0.5	6.5	< 0.5	< 0.5	1	1.5
gg2H-0 j - $p_{\rm T}^H$ -High	1.7	3	5	< 0.5	3	< 0.5	< 0.5	0.5	5.5
gg2H-1 j - p_T^H -Low	1.7	2.5	12	0.5	7	< 0.5	< 0.5	1	6
gg2H-1 j - p_T^H -Med	1.7	3	7.5	< 0.5	1	< 0.5	< 0.5	1.5	5.5
$gg2H-1j-p_T^H$ -High	1.7	3	11	0.5	2	< 0.5	< 0.5	2	7.5
gg2H-2 <i>j</i>	1.7	2.5	16.5	1	12.5	0.5	< 0.5	2.5	10.5
$gg2H-p_T^H$ -High	1.7	1.5	3	0.5	3.5	< 0.5	< 0.5	2	3.5
qq2Hqq-VH	1.8	4	17	1	4	1	0.5	5.5	8
qq2Hqq-VBF	1.7	2	3.5	< 0.5	5	< 0.5	< 0.5	6	10.5
qq2Hqq-BSM	1.7	2	4	< 0.5	2.5	< 0.5	< 0.5	3	8
VH-Lep	1.8	2.5	2	1	2	0.5	< 0.5	1.5	3
ttH	1.7	2.5	5	0.5	1	0.5	< 0.5	11	3

CORRELATION MATRIX FOR STXS MEASUREMENT

The expected impact of the CP-odd and CP-even Wilson coefficients on the cross section of the STXS bins

- chosen value of the Wilson coefficient corresponds almost to the expected 68% CL
- black points are the observed values of the STXS measurements

EFT INTERPRETATION

Performed interpretation with two Wilson coefficients simultaneously fitted • other coefficients fixed to 0

COUPLINGS IN HIGGS BOSONIC DECAY

$H \to \gamma \gamma$

Multiclass	BDT
-------------------	-----

 $\eta_{\gamma_1}, \eta_{\gamma_2}, p_{\mathrm{T}}^{\gamma\gamma}, y_{\gamma\gamma},$ $p_{T,ij}^{\dagger}, m_{jj}$, and $\Delta y, \Delta \phi, \Delta \eta$ between j_1 and j_2 , $p_{\mathrm{T},\gamma\gamma i_{1}}, m_{\gamma\gamma i_{1}}, p_{\mathrm{T},\gamma\gamma i_{1}}^{\dagger}, m_{\gamma\gamma i_{1}}^{\dagger}$ Δy , $\Delta \phi$ between the $\gamma \gamma$ and jj systems, minimum ΔR between jets and photons. invariant mass of the system comprising all jets in the event. dilepton $p_{\rm T}$, di-e or di- μ invariant mass (leptons are required to be oppositely charged). $E_{\rm T}^{\rm miss}$, $p_{\rm T}$ and transverse mass of the lepton + $E_{\rm T}^{\rm miss}$ system, $p_{\rm T}, \eta, \phi$ of top-quark candidates, $m_{t,t}$ Number of jets[†], of central jets $(|n| < 2.5)^{\dagger}$, of *b*-jets[†] and of leptons. $p_{\rm T}$ of the highest- $p_{\rm T}$ jet, scalar sum of the $p_{\rm T}$ of all jets, scalar sum of the transverse energies of all particles ($\sum E_T$), E_T^{miss} significance, $\left|E_{\rm T}^{\rm miss} - E_{\rm T}^{\rm miss}$ (primary vertex with the highest $\sum p_{\rm T, track}^2$) > 30 GeV Top reconstruction BDT of the top-quark candidates. $\Delta R(W, b)$ of t_2 . $\eta_{i_F}, m_{\gamma\gamma i_F}$ Average number of interactions per bunch crossing.

STXS classes	Variables			
Individual STXS classes from $gg \rightarrow H$ $qq' \rightarrow Hqq'$ $qq \rightarrow H\ell\nu$ $pp \rightarrow H\ell\ell$ $pp \rightarrow H\nu\bar{\nu}$	$ \begin{array}{l} \text{All multiclass BDT variables,} \\ p_T^{\gamma\gamma} \text{posted to the thmut axis of the }\gamma\gamma \text{ system}(p_{\text{Tr}}^{\gamma\gamma}), \\ \Delta_{T\gamma\gamma}, \eta^{\gamma\sigma\eta\gamma} = \frac{2\pi z^{-2H_z}}{2\pi z^{-2H_z}}, \\ \phi_{\gamma\gamma}^* = \tan\left(\frac{\pi z^{-1}\Delta^{\Phi_{\gamma \ell}}}{2\pi z^{-1}}\right)\sqrt{1 - \tanh^2\left(\frac{\Delta_{T\gamma \ell}}{2\pi z}\right)}, \\ \cos\theta_{\gamma\gamma}^* = \left \frac{(E^{\gamma_1} + p_1^{\gamma_1}) \cdot (E^{\gamma_2} - p_1^{\gamma_2}) - (E^{\gamma_1} - p_1^{\gamma_1}) \cdot (E^{\gamma_2} + p_1^{\gamma_2})}{m_{\gamma\gamma} + \sqrt{m_{\gamma}^2 + (\mu_1^{\gamma_1} + \mu_1^{\gamma_1})^2}}\right \\ \text{Number of electrons and muons.} \end{array} $			
all <i>tTH</i> and <i>tHW</i> STXS classes combined	p_T, n, ϕ on A by and p_2 , $n = 1$, p_T, n, ϕ of Y_1 and p_2 , p_T, η, ϕ and b -tagging scores of the six highest- p_T jets, E_T^{mins}, E_T^{mins} againfacance, E_T^{mins} azimuthal angle. Top reconstruction BDT scores of the top-quark candidates, p_T, n, ϕ of the two highest- p_T leptons.			
tHqb	$\begin{array}{c} p_{1}^{2\gamma}(m_{2\gamma}, m_{\gamma}, m_{\gamma}, \\ p_{T}, \text{invariant mass, BDT score and } \Delta R(W, b) \text{ of } t_{1}, \\ p_{T}, \eta \text{ of } t_{2}, \\ p_{T}, \eta \text{ of } r_{2}, \\ p_{T}, \eta \delta p_{1}, \delta \delta a_{1/p}, \Delta \theta_{2/p}, \Delta \theta_{\gamma\gamma/p}, \\ \text{Invariant mass variables: } m_{\gamma\gamma/p}, m_{1/p}, m_{3/p}, m_{\gamma\gamma/p}, \\ \text{Invariant mass variables: } m_{\gamma\gamma/p}, m_{1/p}, m_{3/p}, m_{\gamma\gamma/p}, \\ \text{Number of jets with } p_{T} > 25 \text{ GeV}, \text{Number of } b$ -jets with $p_{T} > 25 \text{ GeV}^{*}; \\ \text{Number of leptons}^{*}, E_{T}^{\text{dess}} \text{ significance}^{*} \end{array}$			

Binary BDTs

CATEGORY COMPOSITION IN TERMS OF STXS SIGNALS

Dominant systematic uncertainties in $H\to\gamma\gamma$

	ggF + $b\bar{b}{\rm H}$	VBF	WH	ZH	tīH	tH
Uncertainty source	$\Delta \sigma$ [%]	$\Delta \sigma$ [%]	$\Delta \sigma$ [%]	$\Delta \sigma$ [%]	$\Delta \sigma$ [%]	$\Delta \sigma$ [%]
Theory uncertainties						
Higher-order QCD terms	±1.4	±4.1	±4.1	±12	±2.8	±16
Underlying event and parton shower	±2.5	±16	±2.5	± 4.0	±3.6	± 48
PDF and α_s	< ±1	±2.0	± 1.4	±2.3	< ±1	± 5.8
Matrix element	< ±1	±3.2	< ±1	±1.2	±2.5	± 8.2
Heavy-flavour jet modelling in non- $t\bar{t}H$ processes	< ±1	$<\pm1$	$< \pm 1$	$<\pm1$	$<\pm1$	±13
Experimental uncertainties						
Photon energy resolution	±3.0	±3.0	±3.8	±4.8	±3.0	±12
Photon efficiency	±2.7	±2.7	±3.3	±3.6	±2.9	±9.3
Luminosity	± 1.8	±2.0	± 2.4	±2.7	± 2.2	±6.6
Pile-up	± 1.4	± 2.2	± 2.0	±2.3	± 1.4	±7.3
Background modelling	±2.0	±4.6	±3.6	±7.2	±2.5	±63
Photon energy scale	< ±1	< ±1	< ±1	±1.3	< ±1	±5.6
$\text{Jet}/E_{\text{T}}^{\text{miss}}$	< ±1	± 6.8	< ±1	±2.2	±3.5	±22
Flavour tagging	< ±1	< ±1	< ±1	< ±1	±1.5	± 3.4
Leptons	< ±1	< ±1	< ±1	< ±1	$< \pm 1$	± 1.8
Higgs boson mass	< ±1	< ±1	< ±1	< ±1	< ±1	< ±1

 κ interpretation in $H\to\gamma\gamma$

Four different models are considered, targeting different Higgs couplings

value and sign of top-quark coupling

Direct test of top quark coupling

- other coupling fixed to SM
- $\kappa_t < 0$ excluded at 2.2 σ (6.7 σ) with effective(resolved) loop
 - sensitivity directly from tH prod mode

Generic parametrization with coupling ratios

- $\kappa_{g\gamma} = \frac{\kappa_g \kappa_\gamma}{\kappa_H}, \lambda_{Vg} = \frac{\kappa_V}{\kappa_g}, \lambda_{tg} = \frac{\kappa_t}{\kappa_g}$
- no assumptions on Higgs total width
- $\lambda_{tg} < 0$ excluded at 2.1σ

κ interpretation in $H\to\gamma\gamma$

Four different models are considered, targeting different Higgs couplings

- presence of BSM physics in loop processes $(\kappa_g, \kappa_\gamma)$
- unified couplings to fermion and vector bosons (κ_V, κ_F)

EFT interpretation in $H \to \gamma \gamma$

The expected impact of the most relevant EFT operators on the cross section of the STXS bins chosen value of the Wilson coefficient corresponds almost to the expected 68% CL $gg \rightarrow H$ and ttH (second), the $H \rightarrow \gamma\gamma$ decay (third), and VBF and VH processes (bottom)

$H \rightarrow WW^*$

Preselection signal composition in $H \to WW^*$

Category	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ VBF}$		
	Two isolated, different-flavor leptons $(\ell = e, \mu)$ with opposite charge					
Preselection	$p_{\rm T}^{\rm lead} > 22 { m GeV}$, $p_{\rm T}^{\rm sublead} > 15 { m GeV}$					
reselection		$m_{\ell\ell} >$	10 GeV			
		$N_{b-\text{jet},(p_{\mathrm{T}}>}$	$>_{20 \text{ GeV}} = 0$			
Background rejection	$\Delta \phi_{\ell \ell, E_{\mathrm{T}}^{\mathrm{miss}}} > \pi/2$	$\Delta \phi_{\ell \ell, E_T^{\text{miss}}} > \pi/2 \qquad \qquad m_{\tau \tau} < m_Z - 25 \text{ GeV}$				
	$p_{\mathrm{T}}^{\ell\ell} > 30 \; \mathrm{GeV}$	$\max\left(m_{\mathrm{T}}^{\ell}\right) > 50 \; \mathrm{GeV}$				
		$m_{\ell\ell} < 55 { m ~GeV}$				
		$\Delta\phi_{\ell\ell} < 1.8$				
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$			fail central jet veto			
topology			or	central jet veto		
			fail outside lepton veto	outside lepton veto		
			$ m_{jj}-85 >15~{\rm GeV}$	$m_{jj} > 120 \text{ GeV}$		
			or			
			$\Delta y_{jj} > 1.2$			
Discriminating fit variable		m _T		DNN		

Control regions selection in $H \to WW^*$

CR	$N_{\text{jet},(p_T>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\rm jet,(PT>30~GeV)} \ge 2~{ m ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} \ge 2 \text{ VBF}$	
	$\Delta \phi_{\ell \ell, E_T^{min}} > \pi/2$	$m_{\ell\ell} >$			
	$p_{\mathrm{T}}^{\ell\ell} > 30 \; \mathrm{GeV}$	$ m_{\tau\tau} - m_Z > 25 \text{ GeV}$	$m_{\tau\tau} < m_Z - 25 \; {\rm GeV}$		
$aa \rightarrow WW$	$55 < m_{\ell\ell} < 110 \; \mathrm{GeV}$	$\max(m_T^\ell) > 50 \text{ GeV}$	$m_{\rm T2} > 165~{\rm GeV}$		
44	$\Delta \phi_{\ell \ell} < 2.6$		fail central jet veto		
			or fail outside lepton veto		
			$ m_{jj} - 85 > 15 \text{ GeV}$		
			or $\Delta y_{jj} > 1.2$		
	Numero and an > 0	$N_{b\text{-jet},(p_T>30 \text{ GeV})} = 1$	N_{1} , N_{2} , N_{2} , N_{2} , N_{3} , N_{3	Nu	
	1 b-jet, (20 <pr<30 gev)=""> 0</pr<30>	$N_{b ext{-jet},(20 < p_T < 30 \text{ GeV})} = 0$	$M_{B-jet,(p_T>20 \text{ GeV})} = 0$	$P(b-jet, (p_T>20 \text{ GeV}) = 1$	
	$\Delta \phi_{\ell \ell, E_1^{\min}} > \pi/2$				
	$p_T^{\ell\ell} > 30 \text{ GeV}$	$\max(m_T^\ell) > 50 \text{ GeV}$	$m_{\ell\ell} > 80 \text{ GeV}$		
tī/Wt	$\Delta \phi_{\ell\ell} < 2.8$		$\Delta \phi_{\ell \ell} < 1.8$		
			$m_{\mathrm{T2}} < 165~\mathrm{GeV}$		
			fail central jet veto	central jet veto	
			or fail outside lepton veto	outside lepton veto	
			$ m_{jj} - 85 > 15 \text{ GeV}$		
			or $\Delta y_{jj} > 1.2$		
	$m_{\ell\ell}$	< 80 GeV	$m_{\ell\ell} < 55 \text{ GeV}$	$m_{\ell\ell} < 70 \text{ GeV}$	
Z/γ^*	no p _T ^{miss} re	equirement			
	$\Delta \phi_{\ell\ell} > 2.8$	$m_{\tau\tau} > m_{\tau}$	z – 25 GeV	$ m_{\tau\tau}-m_Z \leq 25~{\rm GeV}$	
		$\max(m_T^\ell) > 50 \text{ GeV}$	fail central jet veto	central jet veto	
			or fail outside lepton veto	outside lepton veto	
			$ m_{jj} - 85 > 15 \text{ GeV}$		
			or $\Delta y_{jj} > 1.2$		

D. MUNGO (UNIVERSITY OF TORONTO)

STXS analysis design in $H o WW^*$

Expected Composition

CORRELATION MATRIX STXS MEASUREMENT

