

Higgs Physics at Muon Collider with detailed detector simulation

Lorenzo Sestini INFN-Padova

On behalf of the Muon Collider Detector and Physics group

ICHEP 2022 - Bologna - 8/7/2022

Istituto Nazionale di Fisica Nucleare

- The Muon Collider is the ideal facility for Higgs **Physics**
- Cleaner collisions as in electron-positron colliders and energy frontier as in hadron colliders
- At the first proposed stage for a Muon Collider (3 TeV) of about 500k Higgs are produced with 1 ab⁻¹
- In this talk: Higgs Physics at 3 TeV is demonstrated with detailed detector simulation

Overview of Muon Collider project at ICHEP 2022: talk by Daniel Schulte

Higgs Physics at Muon Collider

 $E_{\rm cm}$ [TeV]

\sqrt{s}	$\int \mathcal{L} dt$
$3 { m TeV}$	$1 {\rm ~ab^{-1}}$
$10 { m TeV}$	$10 {\rm ~ab^{-1}}$
$14 { m TeV}$	20 ab^{-1}

5 years of data taking, **1** experiment

Beam-induced background (BIB)

- interactions
- The BIB is mitigated by the Machine Detector Interface (e.g. two tungsten nozzles are inserted)
- is fundamental to study the impact of the BIB on the detector
- the machine and the Machine Detector Interface lattice

Talk on Muon

<u>calorimeter</u> by

<u>Collider</u>

Eleonora

Diociaiuti

hadronic calorimeter

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm² cell size;
- 7.5 λ_l.

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;

• 22 $X_0 + 1 \lambda_1$.

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

• The interaction of BIB/signal with the detector is simulated with Geant4

Detector

tracking system

- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 µm² pixel Si sensors.

Inner Tracker: ٠

- 3 barrel layers and 7+7 endcap disks;
- 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 µm x 10 mm microstrip Si sensors.

shielding nozzles

Tungsten cones + borated polyethylene cladding.

superconducting solenoid (3.57T)

Physics objects reconstruction

- **Reconstruction** in this environment is not trivial:
 - the high hit multiplicity from the BIB in the vertex detector/ tracking modules produces a significant combinatorial problem
 - A diffuse BIB background is present in the calorimeters
 - The nozzles, that are fundamental for BIB mitigation, reduce the acceptance in the forward region

Most of the BIB particles are asynchronous with respect to the bunch crossing: timing is crucial for reconstruction

More details on Muon Collider reconstruction in the poster by Paola Salvini

ECA

Combinatorial tracks from BIB

HCAL

BIB hits in calorimeters

F	N
isica	Nucleare

- Signal $\mu^+\mu^- \rightarrow H(\rightarrow bb)+X$ and background $\mu^+\mu^- \rightarrow qq + X$ (with q=b or c) generated with WHIZARD+Pythia8. X is pair of neutrinos or muons
- Two jets with a Secondary Vertex tag are **required.** Background from light jets is considered negligible
- 59.5k signal events and 65.4k background events are expected with 1 ab⁻¹
- Selected background is mainly coming from $Z \rightarrow b\bar{b}/c\bar{c}$ decays
- The signal yield can be extracted with a fit to the invariant mass distribution

A relative statistical uncertainty on the $H \rightarrow bb$ cross section of 0.75% is found

Compatible with results obtained with parametric simulations https://arxiv.org/abs/2203.09425

Muon + 2 jets final state is considered

- Signal and backgrounds are generated with WHIZARD+Pythia8
- Two types of background: with and without Higgs decays
- Two multivariate discriminators (Boosted Decision Tree, BDT) are used to distinguish the signal from each type of background
- Of about 2.4k signal events and 2.6k background events are expected after all requirements
- A relative uncertainty on the $H \rightarrow WW^*$ cross section of 2.9% is obtained

- Signal and backgrounds generated with MadGraph5
- Two main backgrounds: $\mu^+\mu^- \rightarrow \mu^+\mu^- \nu\nu$ and $\mu^+\mu^- \rightarrow \mu^+\mu^-$
- Two multivariate discriminators (BDTs) are trained to distinguish the signal from the two main background
- Signal yield extracted with an unbinned maximum likelihood fit to the **dimuon invariant mass distribution**
- A relative uncertainty on the $H \rightarrow \mu^+\mu^-$ cross section of 38% is found

$H \rightarrow \mu^+\mu^-$

	Process	Expected events with	$L=1 ab^{-1}$
	$105 < m_{\mu\mu} < 145 \text{ GeV}$	•	
5+Pythia8	$[1]\mu^+\mu^- \to H\nu_\mu\bar{\nu}_\mu,$		
	$H \rightarrow \mu^+ \mu^-$	24.2	
11+11-11+11-	$[1]\mu^+\mu^- \to H\mu^+\mu^-,$		
μμμμ	$H \rightarrow \mu^+ \mu^-$	1.6	
	$\mu^+\mu^- ightarrow \mu^+\mu^- u ar{ u}_\mu$	636.5	
)	$\mu^+\mu^- ightarrow \mu^+\mu^-\mu^+\mu^-$	476.4	
	$[tl]\mu^+\mu^- \to t\bar{t} \to W^+W^-b\bar{b},$		
10	$W^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}(\bar{\nu}_{\mu})$	1.1	

https://doi.org/10.22323/1.398.0579

- The measurement of the Higgs width ($\Gamma_{\rm H}$) can be obtained by determining the number of on-shell and off-shell $H \rightarrow WW^*$ and $H \rightarrow ZZ^*$ processes
- The ratio between the off-shell and on-shell is proportional to $\Gamma_{\rm H}$
- (Di)muon + 2 jets final state is considered
- Signal samples have been generated with MadGraph5, background with WHIZARD
- Three observables are simultaneously fitted to extract the on-shell and off-shell signal yields: Higgs mass, muon momentum, muon helicity angle
- A relative uncertainty on $\Gamma_{\rm H}$ of 5.3% is found

Measurement of Higgs width

Process Expected events On-shell $H \to ZZ \to \mu^+\mu^- jj$ Off-shell $H \to ZZ \to \mu^+ \mu^- jj$ $\nu \bar{\nu} \mu^+ \mu^- j j$ background 458.3On-shell $H \to W^+ W^- \to \mu \nu_\mu j j$ 1803.4Off-shell $H \to W^+ W^- \to \mu \nu_\mu j j$ 411.4 $\nu \bar{\nu} \mu \nu_{\mu} j j$ background 2520.3

Couplings with fermions and bosons

- The previous measurements are simultaneously fitted to obtain the couplings measurement
- In this way the precision on the couplings is obtained
- The results are compared with those obtained by CLIC, that uses several datasets with different energies
- Direct comparison is difficult since the 3-energy-stages CLIC program (<u>link</u>) can be exploited in 25 years after the first beam commissioning, while the Muon Collider can collect 1 ab⁻¹ in 5 years

 Γ_H g_{HZZ} g_{HWW} g_{Hbb} $g_{H\mu\mu}$

	Full simulation	CLIC		
	$1 \text{ ab}^{-1} @ 3 \text{ TeV}$	$0.5 \text{ ab}^{-1} @ 350 \text{ GeV} \\ 1.5 \text{ ab}^{-1} @ 1.4 \text{ TeV} \\ 2 \text{ ab}^{-1} @ 3 \text{ TeV} \end{cases}$		
	5.3%	3.5%		
	5.6%	0.8%	CLIC Higgs Physics:	
7	1.3%	0.9%	<u>Eur. Pnys. J. C 77, 47</u>	
	1.7%	0.9%		
	19.1%	7.8%		

- A boosted decision tree (BDT) is trained to separate the Signal and backgrounds (bbbb and H+bb) generated with signal from the background, input observables from WHIZARD+Pythia8 kinematic
- Four jets final state: two Secondary Vertex tag out of four jets • A fit to the BDT output is performed to determine the are required cross section uncertainty
- 50 HH and 432 background events are expected with 1 ab⁻¹

http://hdl.handle.net/20.500.12608/22861

Preliminary

$H H \rightarrow bb bb cross section$

Trilinear coupling

- Two BDTs are trained to separate HH→4b from 4b and HH vs HH trilinear (*e.g.* only trilinear diagrams are included)
 ^{0.5}
 ^{0.5}
 ^{0.45}
 ^{0.45}
- The templates obtained with different coupling hypotheses are compared with pseudoexperiments.
- A likelihood technique is used to determine the sensitivity on λ_3
- The preliminary result on the λ₃ statistical uncertainty is of about 20% with 1.0 ab⁻¹ (at 68% CL)
- CLIC has [-8%,+11%] at 68% CL with 2.5 ab⁻¹ at 1.4 TeV + 5 ab⁻¹ at 3 TeV [Eur. Phys. J. C 80, 1010 (2020)]

- The Muon Collider environment is very different from electronpositron and hadron colliders
- A huge effort is on-going to design the MDI, the detector and the reconstruction algorithms
- In this talk I have demonstrated that Higgs physics at Muon Collider is possible, by using a detailed simulation of the experiment
- Just few key channels have been considered but we plan to expand our studies

Roadmap for a 3 TeV Muon Collider

Conclusions

Thanks for your attention!

Requirements for Higgs analyses

 $H \rightarrow ZZ \rightarrow \mu^+\mu^- jj$ $5 \text{ GeV} < P_{T,\mu} < 300 \text{ GeV}$ $20 \text{ GeV} < P_{T,j} < 300 \text{ Ge}$ $M_{\mu^+\mu^-} < 105 \,\,{\rm GeV}$ $10 \text{ GeV} < M_{ii} < 320 \text{ Ge}$ $M_H < 1 \text{ TeV}$

> Preselection require Two opposite-charge $10^{\circ} < \theta_{\mu} < 170$ $105 < m_{\mu\mu} < 145$ $p_T(\mu^{\pm}) > 5 \text{ GeV}$ $p_T(\mu^+\mu^-) > 30 \text{ C}$ $p_T(\mu^+) + p_T(\mu^-) > 50 \text{ GeV}$

$$\begin{array}{ccc} H \rightarrow W^+ W^- \rightarrow \mu \nu_\mu jj \\ V & 5 \ {\rm GeV} < P_{T,\mu} < 200 \ {\rm GeV} \\ {\rm eV} & 20 \ {\rm GeV} < P_{T,j} < 200 \ {\rm GeV} \\ & M_{\mu,MET} < 400 \ {\rm GeV} \\ {\rm eV} & M_{jj} < 150 \ {\rm GeV} \\ & M_H < 1 \ {\rm TeV} \end{array}$$

$$\frac{1}{2}$$
 muons
 0° $H \rightarrow \mu^{+}\mu^{-}$
 GeV
 V
 GeV
 GeV

HH and trilinear coupling

- $\mu\mu \rightarrow HHvv$ is reconstructed in the four b-jets final state.
- |η(jet)|<2.5, p_T(jet)>20 GeV fiducial region, two SV-tag out of four jets are required.
- Signal and backgrounds are generated at NLO with WHIZARD.
- Irreducible backgrounds are bbbb and H(→ bb)bb
- Kinematical variables can be used to separate the signal from the background.

HH and trilinear coupling

- The kinematic of the HH process is also used to separate the HH from the HH trilinear-only contribution.
- Two multi-layer perceptrons are trained: MLP (4b vs HH) and MLP(HH vs HH trilinear).

$\mu\mu \rightarrow \mu\mu$ Bhabha events counting

$$\frac{\Delta L_{int}}{L_{int}} = \sqrt{\frac{\Delta N_{ev}^2}{N_{ev}^2} + \frac{\Delta \sigma_B^2}{\sigma_B^2}} = \left(\frac{\Delta N_{ev}}{N_{ev}}\right) \oplus \left(\frac{\Delta \sigma_B}{\sigma_B}\right)$$

$$\frac{\Delta N_{Bhabha}}{N_{Bhabha}} = \frac{1}{\sqrt{N_{Bhabha}}} = 0.002$$

Luminosity measurement

Study at 1.5 TeV

