Double Higgs production at CMS

Florian Bury On behalf of the CMS collaboration

ICHEP 2022 07/07/2022

UCLouvain

Institut de recherche en mathématique et physique

2

Why do we care about HH ?

Non-resonant gluon gluon fusion (GGF)

 $\sigma_{HH}^{GGF} = 31.05 \text{ fb} \pm 3\% (\text{PDF} + \alpha_S) \stackrel{+2.2\%}{_{-5\%}} (\text{scale}) \pm 2.6\% (m_t) @ 13 TeV$

Non-resonant vector boson fusion (VBF)

 $\sigma_{HH}^{VBF} = 1.73 \text{ fb } \pm 2.1\% (\text{PDF} + \alpha_S) \stackrel{+0.03\%}{_{-0.04\%}} \text{(scale)} @ 13 \ TeV$

$$V(\phi^{\dagger}\phi) = -\mu^{2}(\phi^{\dagger}\phi) + \lambda(\phi^{\dagger}\phi)^{2}$$

$$EWSB \quad (\mu^{2} = \lambda v^{2})$$

$$\mathcal{L}_{scalar} \ni \frac{1}{2} (\partial_{\mu}h\partial^{\mu}h) - \lambda v^{2}h^{2} - \lambda vh^{3} - \frac{\lambda}{4}h^{4} - \frac{\lambda v^{4}}{4}$$
Single Higgs (2012)
$$m_{h} = \sqrt{2\lambda v}$$
Double Higgs (???)

07/07/2022

ICHEP 2022

07/07/2022

3

HH decays : no golden channel !

07/07/2022

arXiv:2202.09617

ICHEP 2022

arXiv:2202.09617

HH→bbbb

arXiv:2202.09617 arXiv:2205.06667

HH→bbττ

arXiv:2206.09401

Event selection

- Hadronic tau using DeepTau algorithm $N(\tau_h) \geq 1$
- 2 OS leptons + 3 lepton veto
- 3 channels : τ_{μ}/τ_h , τ_e/τ_h , τ_h/τ_h
- 2 jets + btagging using HH-btag
- Elliptic mass cut on resonances (only GGF) $H \rightarrow \tau\tau \text{ (SV}_{Fit} \text{ algo) and } H \rightarrow bb \text{ (mass sum)}$

$$\frac{(m_{\tau\tau} - 129 \text{ GeV})^2}{(53 \text{ GeV})^2} + \frac{(m_{bb} - 169 \text{ GeV})^2}{(145 \text{ GeV})^2} < 1 \text{ (Resolved)}$$

$$\frac{(m_{\tau\tau} - 128 \text{ GeV})^2}{(60 \text{ GeV})^2} + \frac{(m_{bb} - 159 \text{ GeV})^2}{(94 \text{ GeV})^2} < 1 \text{ (Boosted)}$$

• DNN classification

- Background estimation
- QCD multijet from datadriven ABCD method :
 - \rightarrow Averaged from two CR

- tt and DY : MC normalised from data CR
- Other backgrounds : pure MC

ICHEP 2022

HH→bbττ

arXiv:2206.09401

JHEP03(2021)257

10

07/07/2022

JHEP03(2021)257

Event selection

Signal extraction and results

HH→bbZZ

arXiv:2206.10657

Event selection

- 2 pairs of OS SF isolated leptons
- ZZ candidates : $40 \text{ GeV} < m_{Z_1} < 120 \text{ GeV}$ $12 \text{ GeV} < m_{Z_2} < 120 \text{ GeV}$
- 2 jets → b-jets (highest b-tag score)
- 3 categories: 4e, 4μ, 2e2μ
- 4l invariant mass
 - $115~{\rm GeV}~< m(4l) <~135~{\rm GeV}$

Backgrounds

- Irreducible :
 - Single Higgs
 - $qq \rightarrow ZZ^*$, $gg \rightarrow ZZ^*$
 - ttW, ttZ

07/07/2022

- Reducible : Z+X (fake leptons)
 - \rightarrow data-driven approach :

fake factor e, μ in control regions

HH→Multilepton (WWWW, WWττ, ττττ)

arXiv:2206.10268

Event selection

- 7 categories based on I/τ \rightarrow 2lss, 3l, 4l, 3l+1 τ_h , 2l+2 τ_h , 1l+3 τ_h , 0l+4 τ_h
- AK4/AK8 jets (hadronic W decay)
 → 2lss and 3l categories
- B-jet veto
- M_{II} cuts
 - Remove meson decays
 - Overlap with bbZZ
 - Reduce DY background

Backgrounds

- I/τ_h fakes : data-driven with fake factor method in CR
- Electron charge flip measurement : data-driven using similar method
- Other backgrounds : simulation

ICHEP 2022

HH combination

07/07/2022

2016 HH combination

Run-2 HH combination

HH combination

07/07/2022

2016 HH combination

Run-2 HH combination

 $-11.8 (-7.1) < \kappa_{\lambda} < 18.8 (13.6)$

Run-2 current combination results :

 $-1.24 < \kappa_{\lambda} < 6.49$

... not only from the gain in luminosity !

ICHEP 2022

 $0.67 < \kappa_{2V} < 1.38$ $\kappa_{2V} = 0$ excluded at 6.6 σ

Summary

- Non-resonant Higgs pair production mechanism :
 - Probe Higgs self-coupling \rightarrow Scalar potential shape
 - Measure predicted couplings and search for new physics •
- Latest CMS combined Run-2 results : •
 - Inclusive HH cross section :
 - Trilinear couplings :
 - VVHH coupling :
 - ... and many more (couplings, EFT interpretation, resonant)
- Run-2 exceeded expectations thanks to :
 - Better reconstruction of boosted topologies •
 - Additional final states considered •
 - More performant b-tagging ٠
 - Inclusion of VBF measurements ٠
- Run-3 : closing in on σ_{HH}^{SM} ? \rightarrow stay tuned !

ICHEP 2022

Back-up

arXiv:1910.00012

18

07/07/2022

19

07/07/2022

arXiv:1910.00012

GGF

$$\mathcal{L}_{h} = \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{1}{2} m_{H}^{2} h^{2} - \kappa_{\lambda} \frac{m_{H}^{2}}{2v} h^{3} - m_{t} \left(v + \kappa_{t} \frac{h}{v} + c_{2} \frac{H^{2}}{v^{2}} \right) \left(\bar{t}_{L} t_{R} + h.c. \right) + \frac{\alpha_{s}}{12\pi} \left(c_{g} \frac{h}{v} - c_{2g} \frac{h^{2}}{2v^{2}} G_{\mu\nu}^{a} G^{a,\mu\nu} \right),$$

07/07/2022

VBF

arXiv:1910.00012

GGF

07/07/2022

$$R_{HH} = \sigma_{LO} / \sigma_{LO}^{SM} = A_1 \kappa_t^4 + A_2 c_2 + (A_3 \kappa_t^2 + A_4 c_g^2) \kappa_\lambda^2 + A_5 c_{2g}^2 + (A_6 c_2 + A_7 \kappa_t \kappa_\lambda) \kappa_t^2 + (A_8 \kappa_t \kappa_\lambda + A_9 c_g \kappa_\lambda) c_2 + A_{10} c_2 c_{2g} + (A_{11} c_g \kappa_\lambda + A_{12} c_{2g}) \kappa_t^2 + (A_{13} \kappa_\lambda c_g + A_{14} c_{2g}) \kappa_t \kappa_\lambda + A_{15} c_g c_{2g} \kappa_\lambda$$

HH inference

HH inference tool :

- Documentation : https://cms-hh.web.cern.ch/tools/inference/
- Wrapper around combine commands with a task scheduler law
- Useful manipulation scripts
- Physics model containing
 - BR scaling with the couplings
 - Single Higgs scaling with the couplings
 - NNLO scaling + theory systematics
 - Interpolation for a given set of coupling points and their associated shapes (see below)

$$A = \kappa_t \kappa_\lambda \triangle + \kappa_t^2 \Box$$

$$\sigma(\kappa_t, \kappa_\lambda) \sim |A|^2 = \kappa_t^2 \kappa_\lambda^2 |\Delta|^2 + \kappa_t^4 |\Box|^2 + \kappa_t^3 \kappa_\lambda |\Delta^*\Box + \Delta\Box^*|$$

$$= \boldsymbol{c}(\kappa_t,\kappa_\lambda)^T \boldsymbol{.} \boldsymbol{v},$$

with

$$\boldsymbol{c}(\kappa_t,\kappa_\lambda) = (\kappa_t^2 \kappa_\lambda^2, \kappa_t^4, \kappa_t^3 \kappa_\lambda)$$

If 3 points are known, then $v = C^{-1}\sigma$ is fully determined The limits can be established for any value of the couplings via

$$\sigma(\kappa_t,\kappa_\lambda) = \boldsymbol{c}(\kappa_t,\kappa_\lambda)^T \boldsymbol{C}^{-1} \boldsymbol{\sigma}$$

Note :

- Also works at NLO (still scale with the power of the couplings)
- Also works for differential measurement (→ histograms)
- Can also be applied to more couplings (3 couplings \rightarrow 6 points)
- Caveat : points used in interpolation must be representative enough

07/07/2022

• ...

Triggers :

- 2016 :
 - 4 jets with pT > 45 GeV
 - 2 jets with pT > 30 GeV
 + 2 jets with pT > 90 GeV
- 2017(2018):
 - 4 jets with pT > 40,45,60,75 GeV
 - HT > 300 (330) GeV

Offline :

- Jets :
 - |η| < 2.4 (2.5)
 - pT > 30 (40) GeV
 - Pileup ID when pT < 50 GeV
- DeepJet
 - Medium WP : 75 % b-jet efficiency 1(10) % mistag for gluons (charm)
 - Tight WP : 58 % b-jet efficiency
 0.1(2) % mistag for gluons (charm)

07/07/2022

arXiv:2202.09617

24

Application :

- SR (4b) QCD estimation using SR (3b) data $A^{3b}_{SR} \to A^{4b}_{SR}$
- Scaling the number of events using the TF in the CR ${\rm TF} = A_{CR}^{4b}/A_{CR}^{3b}$

TF dependence in the mass plane parameterised by $$m_{\rm ||}$$

- BDT-reweighting used to model differences between 3b and 4b regions,
 - \rightarrow trained on CR, applied on SR
 - \rightarrow For each GGF and VBF categories

Validation :

- Depleted signal region V
- Same method applied
 - \rightarrow Found good agreement between estimation and

 V_{SR}^{4b}

07/07/2022

arXiv:2202.09617

25

 κ_{2V}

07/07/2022

HH→bbbb (boosted)

arXiv:2205.06667

Trigger strategy

- Requirements : HT, jet pT, trimmed mass & double b-tagging
- Fully efficient for jet pT > 500 GeV

HH→bbbb (boosted)

Event selection

ICHEP 2022

HH→bbττ

28

Table 1: Summary of selections applied to the $\tau\tau$ pair. Trigger thresholds in parentheses refer to the 2017–2018 data-taking period.

07/07/2	2022	ICHEP 2022	
	Pair selections	opposite sign, $\Delta R > 0.5$	
		$ d_z < 0.2 {\rm cm}$	
_	Distance to PV	$ d_{xy} < 0.045 \mathrm{cm}$ (electrons and muons only)	
		Very-very-loose DeepTauVsEle	
	$\tau_{\rm h}$ isolation ($\tau_{\rm h} \tau_{\rm h}$ channel)	Very-loose DeepTauVsMu	
		Medium DeepTauVsJet	
	-	Very-loose DeepTauVsEle	
	$ au_{\rm h}$ isolation ($ au_{\rm e} au_{\rm h}, au_{\mu} au_{\rm h}$ channels)	Tight DeepTauVsMu	
		Medium DeepTauVsJet	
	Lepton ID and Isolation	Tight electron MVA ID+Iso, Tight muon ID and Iso	
	η thresholds	tau: $ \eta <$ 2.1 (2.3) for di-tau and cross (single) triggers	
		electrons and muons: $ \eta < 2.1$	
	Offline $p_{\rm T}$ thresholds	1 GeV (electrons and muons), 5 GeV (taus)	
		di-tau: $p_{\rm T} > 35$ GeV, di-tau VBF: $p_{\rm T} > 20$ GeV	
	Online $p_{\rm T}$ trigger thresholds	single- μ : $p_{\rm T} > 22(24)$ GeV, cross- μ : $p_{\rm T} > 19(20)$ GeV	
		single-e: $p_{\rm T} > 25(32)$ GeV, cross-e: $p_{\rm T} > 24$ GeV	

HH→bbττ

arXiv:2206.09401

1200

29

07/07/2022

 $\widetilde{M}_{\mathrm{X}}$

Dijet-diphoton mass very sensitive to anomalous couplings

$$M_{\rm X} = m_{\gamma\gamma\rm jj} - (m_{\rm jj} - m_{\rm H}) - (m_{\gamma\gamma} - m_{\rm H})$$

• Less dependent on dijet and diphoton resolutions

Category	MVA	$\widetilde{M}_{\mathrm{X}}$ (GeV)
VBF CAT 0	0.52 - 1.00	>500
VBF CAT 1	0.86 - 1.00	250 - 500
ggF CAT 0	0.78 - 1.00	>600
ggF CAT 1		510 - 600
ggF CAT 2		385 - 510
ggF CAT 3		250 - 385
ggF CAT 4	0.62 - 0.78	>540
ggF CAT 5		360 - 540
ggF CAT 6		330 - 360
ggF CAT 7		250 - 330
ggF CAT 8	0.37 – 0.62	>585
ggF CAT 9		375 - 585
ggF CAT 10		330 - 375
ggF CAT 11		250 - 330

JHEP03(2021)257

31

ttH rejection

- ttH major resonant background in high purity regions
- ttHScore → classifying DNN
- Angular and discrimination from W boson decays variables
- ttHScore > 0.26 for GGF (VBF) categories

 Multiclass BDT trained between GGF bbyy (mixture of SM+ BSM), y+jets and yy+jets (MC)

GGF classification

Inputs :

٠

٠

- Kinematic variables (dimensionless)
- Object identification variables
- Object resolution variables
- Signal events : inversely weighted by resolution

ICHEP 2022

VBF classification

- Multiclass BDT trained between GGF (1/3 of events), VBF and γ(γ) + jets (MC)
- Inputs :
 - VBF features of the two forward jets : kinematic + angular
 - HH system variables
 - Centrality
- Signal events : inversely weighted by resolution
- One BDT for each of the 2 subcategories

07/07/2022

33

07/07/2022

HH→bbZZ

CMS-PAS-HIG-20-004

Data-driven Z+X

Probabilities for misidentification of electrons and muons

 f_e / f_μ

- Measured with $Z(II) + e/\mu + jets$ events
- Tight requirement

07/07/2022

 $|M_{inv}(l_1l_2) - M_Z| < 7 \text{ GeV}$

Misidentifications as bins of lepton pT

$$N_{\rm SR}^{\rm Z+X} = \Sigma \frac{f_i}{(1-f_i)} (N_{\rm 3P1F} - N_{\rm 3P1F}^{\rm bkg} - N_{\rm 3P1F}^{\rm ZZ}) + \Sigma \frac{f_i}{(1-f_i)} \frac{f_j}{(1-f_j)} N_{\rm 2P2F}$$

- N_{3P1F} and N_{2P2F} are observed number of events in the control regions Z + 2jets (additional pair of SF OS leptons)
 - 3P1F : one of the four leptons does not pass final selection
 - 2P2F : two leptons (not Z1) do not pass final selection

35

Trigger	Selection requirements for reconstructed				
Single e	$p_{\rm T}({\rm e}) > 27/32 - 35/32 \text{ GeV} (2016/17/18)$				
Single μ	$p_{\rm T}(\mu) > 22-24/24-27/24$ GeV (2016/17/18)				
Double e $e + \mu$ $\mu + e$ Double μ $e + \tau_h$ $\mu + \tau_h$ Double τ_h	$p_{T}(e) > 23, 12 \text{ GeV}$ $p_{T}(e) > 23 \text{ GeV}, p_{T}(\mu) > 8 \text{ GeV}$ $p_{T}(\mu) > 23 \text{ GeV}, p_{T}(e) > 8/12/12 \text{ GeV}$ $p_{T}(\mu) > 17, 8 \text{ GeV}$ $p_{T}(e) > 24 \text{ GeV}, p_{T}(\tau_{h}) > 20-30/30/3$ $p_{T}(\mu) > 19/20/20 \text{ GeV}, p_{T}(\tau_{h}) > 20/2$ $p_{T}(\tau_{h}) > 35-40 \text{ GeV}, n(\tau_{h}) < 0/2$	V (2016/17/18) 60 GeV, $ \eta(e, \tau_h) < 2.1$ (2016/17/18) 27/27 GeV, $ \eta(\mu, \tau_h) < 2.1$ (16/17/18) 2.1			
Triple e Two $e + \mu$ Two $\mu + e$ Triple μ	$p_{T}(r_{h}) > 0.0 \text{ to GeV}, \eta(r_{h}) <$ $p_{T}(e) > 16, 12, 8 \text{ GeV}$ $p_{T}(e) > 12, 12 \text{ GeV}, p_{T}(\mu) > 8 \text{ GeV}$ $p_{T}(\mu) > 9, 9 \text{ GeV}, p_{T}(e) > 9 \text{ GeV}$ $p_{T}(\mu) > 12, 10, 5 \text{ GeV}$	$\begin{array}{c c} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\mathbf{M} = \mathbf{M} + $		

HH→Multilepton

CMS-PAS-HIG-21-002

36

Misidentification background

- Misidentification probability for e,µ and au_h $f_i^l(p_T,\eta)$
- - \rightarrow evaluate misidentification of jet as lepton/tau

• Applied as

$$w = (-1)^{n+1} \prod_{i=1}^{n} \frac{f_i^{\ell}(p_{\mathrm{T}}, \eta)}{1 - f_i^{\ell}(p_{\mathrm{T}}, \eta)}$$

 \rightarrow For both data and MC (subtracted)

Charge flip background

- Only necessary in 2lss category
 - \rightarrow N(2 leptons OS) >> N(2 leptons SS)
- Select events in the SR 2lss, except of the dilepton pair being OS
 - \rightarrow Weight applied to estimate charge flip bkg
- Probability measure in Z→ ee events (negligible for muons)

