XLI International Conference On High Energy Physics

6-13 Luglio 2022 - Bologna

Search for Darkonium at BaBar PRL 128, 021802 (2022)

I. Garzía on behalf of BaBar Collaboratíon

<u>garzia@fe.infn.it</u> isabella.garzia@unife.it

Hidden sector with vector portal

- Astrophysical and Cosmological observations support the existence of Dark Matter
- **Hidden Sector**: new particles that couple very weakly to the SM world via "portals"

mass below electro-weak scale: direct signature

• Interaction Lagrangian in the so-called portal framework:

 $\mathcal{L}_{portal} = \sum O_{SM} \times O_{DS}$

O_{SM}: operator composed from SM fields O_{DS}: operator composed from dark sector fields

• One of lowest dimensional vector portal includes a new gauge boson: the Dark Photon (A')

Hidden sector with vector portal

- If $m_{A'} < 2m_{\gamma}$, the A' decays visibly into a pair of SM particles
- Dark photon lifetime could be sufficiently large to produce displaced decay vertices:

$$ab = \gamma eta c au = rac{p}{m_{A'}^2} \cdot rac{3\hbar c}{lpha \epsilon^2}$$
 if $m_{A'} = 10 \,\mathrm{MeV}/c^2$ and $\epsilon = 10^{-4} = 10^{-4}$

 $\Rightarrow l_{lab} = 0.2 \mathrm{m}$

Dark Matter Bound States in Hidden Sector

• A specific minimal Dark Sector model contains a single Dirac fermion χ :

 $\mathcal{L} = \mathcal{L}_{SM} + \bar{\chi} i \gamma^{\mu} (\partial_{\mu} - i g_D A'_{\mu}) \chi - m_{\chi} \bar{\chi} \chi - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} - \frac{\epsilon}{2} F_{\mu\nu} A'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu}$ coupling constant: $\alpha_D = \frac{g_D^2}{4\pi}$ PRL116, 151801

- g_D sufficiently large: the force between the dark fermions mediated becomes attractive, resulting in the formation of dark matter bound state $\chi \overline{\chi}$ (darkonium)
- The existence of stable bound states requires $1.68m_{A'} \le \alpha_D m_{\chi}$ Phys.Rev.A1, 1577

PEP-II and the BaBar experiment

Vertex detector Support tube Tracking chamber Cherenkov Detector **EM** Calorimeter Magnet coil Muon detector

- Asymmetric e⁺e⁻ collider operating at centerof-mass (cms) energy \sqrt{s} close to 10.58 GeV
- Total integrated luminosity of 514 fb⁻¹ collected, mostly at the $\Upsilon(4S)$ resonance
 - Initial-State-Radiation (ISR): the emission • of a photon in the initial state allows to exploit a lower cms energy range, from threshold to \sqrt{s}

Analysis Strategy

GOAL: search for the reaction $e^+e^- \to \gamma_{ISR} \Upsilon_D \to A'A'A'$

with A' subsequently decays to e^+e^- , $\mu^+\mu^-$, $\pi^+\pi^-$

 $0.001 \text{ GeV} \le m_{A'} \le 3.16 \text{ GeV}$ and $0.05 \text{ GeV} \le m_{\Upsilon D} \le 9.5 \text{ GeV}$ 0

Analysis Strategy

GOAL: search for the reaction $e^+e^- \rightarrow \gamma_{ISR} \Upsilon_D \rightarrow A'A'A'$ with A' subsequently decays to e^+e^- , $\mu^+\mu^-$, $\pi^+\pi^-$

- $0.001 \text{ GeV} \le m_{A'} \le 3.16 \text{ GeV}$ and $0.05 \text{ GeV} \le m_{\Upsilon D} \le 9.5 \text{ GeV}$
 - 6 charged tracks per event, identified as electrons, muons or pions
 - At least one lepton pair of opposite charge with the same flavour
- $\Upsilon_{\rm D}$ candidate by combining three A' candidates
- The detection of γ_{ISR} is not explicitly required \bullet
 - We infer the kinematics of the particle recoiling against the $\Upsilon_{\rm D}$ candidates

Background studies:

- Reconstruct same-sign combinations (combinatorial nature of the bkg)
- \sim 5% of the data
- Signal purity improved by training multiple machine learning models (Random \bullet Forest was chosen, Mach.Learn. 45, 5 (2001)

 $(m_{\gamma D}, m_{A'})$ Mass Distribution

Prompt A' decay

Displaced A' decay vertex: m_{A'}<0.2 GeV

- Training done for each category, based on the number of pion pairs
- 69 events passed the selection criteria

- A' decays most exclusively to e^+e^- pair
- Training done for each $c\tau$
- 56, 33, 31 events selected for $c\tau = 0.1$, 1, 10 mm, respectively

No significant signal is observed

Results

90% C.L. upper limits on the e+e— $\rightarrow \gamma_{ISR} \Upsilon_D$ cross section for prompt dark photon decays (left) and for dark photon lifetime corresponding to $c\tau_{A'} = 1 \text{ mm (right)}$

Looser bounds around $\overline{m_{A'}} \sim 0.8$ GeV and $m_{A'} \sim 1$ GeV, where the dark photons predominantly would decay into $\pi^+\pi^-\pi^0$ and K⁺K⁻ near the ω and ϕ resonances, respectively (not considered in this analysis)

Results

90% C.L. upper limits on the kinetic mixing ϵ^2 as a function of m_{YD} and dark photon mass $m_{A'}$, assuming $\alpha_D = 0.5$

Results

90% C.L. upper limits on the γ -A' kinetic mixing ε for various α_D values assuming $m_{\gamma D} = 9$ GeV (left) and for various Υ_D masses assuming $\alpha_D = 0.5$ (right)

Depending on the value of the model parameters, the upper limit on the γ -A' kinetic mixing ε ranges between 5×10⁻⁵ - 10⁻³

Conclusions

We report the first search for a dark sector bound state decaying into three dark photons in the range 0.001 GeV $< m_{A^3} < 3.16$ GeV and 0.05 GeV < $m_{\gamma D} < 9.5 \text{ GeV}$

$$e^+e^- \to \gamma_{ISR} \Upsilon_D \to A'A'A'$$

- Prompt and displaced dark photon decays are taken into account
- No significant signal is observed ullet
 - we derive 90% C.L. upper limit on the γ -A' kinetic mixing ε at the level ulletof 5×10^{-5} - 10^{-3}
- These measurements improve upon existing constraints up to one order of ightarrowmagnitude over a significant fraction of $m_{A^{3}}$ below 1 GeV for large values of the dark sector coupling constant
- Other darkonium states could be searched for in order to improve the upper \bullet limit cross section (kinetic mixing ε)

bkslide

JHEP06, 004

I. Garzia - ICHEP2022 💥

I. Garzia - ICHEP2022 💥

FIG. 4: The 90% CL upper limits on the kinetic mixing ε^2 as a function of the Υ_D mass, m_{Υ_D} , and dark photon mass, $m_{A'}$, assuming (top left) $\alpha_D = 0.1$, (top right) $\alpha_D = 0.3$, (middle left) $\alpha_D = 0.7$, (middle right) $\alpha_D = 0.9$, and (bottom) $\alpha_D = 1.1$.