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• Wigner suggested proton 
decay in1949 and 1952

Motivation

Wigner “It is conceivable, for instance, that a conservation law for the number of heavy  
particles (protons and neutrons) is responsible for the stability of the protons in the 
same way  as the conservation law for charges is responsible for the stability of  the 
electron.  Without the conservation law in question, the proton could disintegrate, under 
emission of a light quantum, into a positron, just as the electron could disintegrate,  were 
it not for the conservation law for the electric charge, into a light quantum and a 
neutrino." 

After 1965 Sakharov returned to fundamental science and began working 
on particle physics and particle cosmology. 
He tried to explain the baryon asymmetry of the universe; in that regard,  he was 
the first to give a theoretical motivation for proton decay. • 1965 Sakharov

• 1974: Grand unified theories, Georgi & Glashow SU(5)

Theoretical side

https://en.wikipedia.org/wiki/Baryon_asymmetry
https://en.wikipedia.org/wiki/Proton_decay


Future experiments

Chapter 4: Nucleon Decay and Atmospheric Neutrinos 4–64
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Figure 4.2: Current nucleon decay lifetime limits [24, 96] (90% C.L.) compared with ranges predicted
by Grand Unified Theories. The upper section is for p æ e

+
fi

0, most commonly caused by gauge
mediation. The lower section is for SUSY-motivated models, which commonly predict decay modes
with kaons in the final state. Marker symbols other than stars indicate published experimental limits,
as labeled by the colors on top of the figure. The stars represent projected limits for several recently
proposed future experiments, calculated based on Poisson statistics including background, assuming
that detected event yields equal the expected background.
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identify higher-dimensional operators with a flavor struc-
ture that can make rather unconventional nucleon decay
channels dominant. Further, higher-dimensional d > 6
operators typically induce nucleon decays with multi-
body final states and even in simple UV-complete models
one can encounter more complicated nucleon decay chan-
nels such as n ! e+e�⌫ [19] or p ! ⇡+⇡+e�⌫⌫ [12, 16].
Hence, there is a vast landscape of possible motivated
nucleon decay modes of varying complexity.

Experimentally, an extensive nucleon decay search pro-
gram has been carried out over multiple decades, cover-
ing more than 60 decay channels [20]. The most sensi-
tive searches, coming from the Super-Kamiokande (SK)
experiment [21, 22] (see Ref. [23] for a review), have
already pushed the nucleon lifetime limits for certain
channels above 1034 yr [24], twenty-four orders of mag-
nitude beyond the age of our Universe. The frontier of
baryon number violation searches will be spearheaded
by next-generation large-scale underground neutrino ex-
periments, namely the Jiangmen Underground Neutrino
Observatory (JUNO) [25], the Deep Underground Neu-
trino Experiment (DUNE) [26], and Hyper-Kamiokande
(HK) [27]. It is of paramount importance to take full
advantage of these considerable e↵orts and to identify
potential new signals in order to ensure that interesting
channels are not overlooked due to theoretical biases.

In this work we revisit nucleon decay channels arising
from higher-dimensional operators and discuss some of
the possible resulting final states. While systematically
searching through all of the kinematically allowed nu-
cleon decay channels with increased final-state complex-
ity would constitute the strongest probes, this approach
quickly becomes highly impractical beyond the simplest
of the modes. In view of this, we highlight the impor-
tance of inclusive nucleon decay searches. Although these
searches are not as sensitive as exclusive ones looking at
a particular channel, they allow one to cover very broad
parameter space in a model-independent manner and are
practically far more feasible. This approach is particu-
larly fruitful to revisit in view of the upcoming large-scale
experiments.

This paper is organized as follows: in Sec. II we dis-
cuss higher-dimensional operators that lead to nucleon
decay and argue in particular that many of them lead
to multibody final states that are not covered in cur-
rent searches. In Sec. III we provide a brief overview of
current and upcoming detectors as well as existing ex-
clusive nucleon-decay searches. We discuss and propose
possible inclusive searches as well as model-independent
signatures in Sec. IV. Sec. V is devoted to a short dis-
cussion of �B > 1 processes such as dinucleon decay,
which would also profit from inclusive searches. Finally,
we conclude in Sec. VI.

II. NUCLEON DECAY OPERATORS

Several well-motivated theoretical models such as
GUTs or R-parity-violating SUSY lead to nucleon de-
cay, typically with specific two-body channels such as
p ! e+⇡0 or p ! ⌫̄K+ being dominant [8, 9]. In order
to discuss nucleon decay in its generality without being
restricted to a certain model, we instead consider various
possible higher-dimensional operators that can mediate
these processes, an approach1 that goes back to Refs. [14–
18]. We aim to determine which operators lead to two-
body and which lead to multi-body nucleon decays.

A. Operator dimension d = 6

In the SMEFT, operators that exhibit �B = 1 start
to appear at operator mass dimension d = 6. Keeping
the flavor structure, these �B = �L = 1 operators can
be written as

Ld=6 = y1abcd✏
↵��(d

C
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C
i,c,�✏ijLj,d)

+ y2abcd✏
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where ↵,�, � denote the color, i, j, k, l the SU(2)L, and
a, b, c, d the family indices [14–18]. u, d, and ` are the
right-handed up-quark, down-quark, and lepton fields,
while Q and L are the left-handed quark and lepton dou-
blets, respectively. The yj couplings have mass dimen-
sion �2 and the first-generation entries are constrained
to be < (O(1015)GeV)�2 due to the induced two-body
nucleon decays. Specifically, all of the above operators
generate the well-constrained decay p ! e+⇡0 with a
rate of order

�(p ! e+⇡0) '
1

2⇥ 1034 yr

�����
yj1111

(3⇥ 1015 GeV)�2

�����

2

. (2)

A variety of other two-body nucleon decay channels are
induced as well, including muon and kaon modes once
we consider second-generation flavor indices. Three-body
decay modes with similar rates are induced as well [29]
but ultimately lead to weaker constraints.
Operators in Ld=6 involving either charm, top, bot-

tom or tau are seemingly unconstrained by nucleon de-
cay since these particles are heavier than the proton; it
is however possible to go through heavy o↵-shell par-
ticles and still induce nucleon decay, as emphasized in
Ref. [30] for operators involving a tau and more gener-
ally in Ref. [31] (see also Ref. [32] for a UV-complete

1 This approach does not cover the case of beyond-the-SM light
particles X that could lead for example to p ! `+ +X [28].
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identify higher-dimensional operators with a flavor struc-
ture that can make rather unconventional nucleon decay
channels dominant. Further, higher-dimensional d > 6
operators typically induce nucleon decays with multi-
body final states and even in simple UV-complete models
one can encounter more complicated nucleon decay chan-
nels such as n ! e+e�⌫ [19] or p ! ⇡+⇡+e�⌫⌫ [12, 16].
Hence, there is a vast landscape of possible motivated
nucleon decay modes of varying complexity.

Experimentally, an extensive nucleon decay search pro-
gram has been carried out over multiple decades, cover-
ing more than 60 decay channels [20]. The most sensi-
tive searches, coming from the Super-Kamiokande (SK)
experiment [21, 22] (see Ref. [23] for a review), have
already pushed the nucleon lifetime limits for certain
channels above 1034 yr [24], twenty-four orders of mag-
nitude beyond the age of our Universe. The frontier of
baryon number violation searches will be spearheaded
by next-generation large-scale underground neutrino ex-
periments, namely the Jiangmen Underground Neutrino
Observatory (JUNO) [25], the Deep Underground Neu-
trino Experiment (DUNE) [26], and Hyper-Kamiokande
(HK) [27]. It is of paramount importance to take full
advantage of these considerable e↵orts and to identify
potential new signals in order to ensure that interesting
channels are not overlooked due to theoretical biases.

In this work we revisit nucleon decay channels arising
from higher-dimensional operators and discuss some of
the possible resulting final states. While systematically
searching through all of the kinematically allowed nu-
cleon decay channels with increased final-state complex-
ity would constitute the strongest probes, this approach
quickly becomes highly impractical beyond the simplest
of the modes. In view of this, we highlight the impor-
tance of inclusive nucleon decay searches. Although these
searches are not as sensitive as exclusive ones looking at
a particular channel, they allow one to cover very broad
parameter space in a model-independent manner and are
practically far more feasible. This approach is particu-
larly fruitful to revisit in view of the upcoming large-scale
experiments.

This paper is organized as follows: in Sec. II we dis-
cuss higher-dimensional operators that lead to nucleon
decay and argue in particular that many of them lead
to multibody final states that are not covered in cur-
rent searches. In Sec. III we provide a brief overview of
current and upcoming detectors as well as existing ex-
clusive nucleon-decay searches. We discuss and propose
possible inclusive searches as well as model-independent
signatures in Sec. IV. Sec. V is devoted to a short dis-
cussion of �B > 1 processes such as dinucleon decay,
which would also profit from inclusive searches. Finally,
we conclude in Sec. VI.

II. NUCLEON DECAY OPERATORS

Several well-motivated theoretical models such as
GUTs or R-parity-violating SUSY lead to nucleon de-
cay, typically with specific two-body channels such as
p ! e+⇡0 or p ! ⌫̄K+ being dominant [8, 9]. In order
to discuss nucleon decay in its generality without being
restricted to a certain model, we instead consider various
possible higher-dimensional operators that can mediate
these processes, an approach1 that goes back to Refs. [14–
18]. We aim to determine which operators lead to two-
body and which lead to multi-body nucleon decays.

A. Operator dimension d = 6

In the SMEFT, operators that exhibit �B = 1 start
to appear at operator mass dimension d = 6. Keeping
the flavor structure, these �B = �L = 1 operators can
be written as
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where ↵,�, � denote the color, i, j, k, l the SU(2)L, and
a, b, c, d the family indices [14–18]. u, d, and ` are the
right-handed up-quark, down-quark, and lepton fields,
while Q and L are the left-handed quark and lepton dou-
blets, respectively. The yj couplings have mass dimen-
sion �2 and the first-generation entries are constrained
to be < (O(1015)GeV)�2 due to the induced two-body
nucleon decays. Specifically, all of the above operators
generate the well-constrained decay p ! e+⇡0 with a
rate of order
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A variety of other two-body nucleon decay channels are
induced as well, including muon and kaon modes once
we consider second-generation flavor indices. Three-body
decay modes with similar rates are induced as well [29]
but ultimately lead to weaker constraints.
Operators in Ld=6 involving either charm, top, bot-

tom or tau are seemingly unconstrained by nucleon de-
cay since these particles are heavier than the proton; it
is however possible to go through heavy o↵-shell par-
ticles and still induce nucleon decay, as emphasized in
Ref. [30] for operators involving a tau and more gener-
ally in Ref. [31] (see also Ref. [32] for a UV-complete

1 This approach does not cover the case of beyond-the-SM light
particles X that could lead for example to p ! `+ +X [28].
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example with scalar leptoquarks). As an extreme ex-
ample, Ref. [31] has considered the coupling y43333 and
shown that at two-loop level the simple decay n ! ⌫̄⌧⇡0

is induced with an estimated rate

�(n ! ⌫̄⌧⇡
0) '

1

1033 yr

����
y43333

(5⇥ 108 GeV)�2

����
2

. (3)

An even stronger limit y43333 . (1011 GeV)�2 has been
estimated from p ! ⌫̄⌧K+ in Ref. [33]. Despite the sup-
pression by loop factors, Cabibbo–Kobayashi–Maskawa
mixing angles, and the Fermi constant GF , these limits
are far stronger than any constraints from �B = 1 top
or tau decays on the same operator, making nucleon de-
cays clearly the best search channels. Notice that any
operator involving tau leptons brings a missing-energy
tau neutrino in the final state, reducing the detection ef-
ficiency somewhat; turning this around, it is then crucial
to search for (two-body) nucleon decays involving one
neutrino, as these are the best channels of �B = 1 oper-
ators that involve tau leptons. As it is conceivable that
the UV completion that generates the �B = 1 operators
also singles out tau leptons (or any other lepton flavor for
that matter), one must not rely exclusively on searches
involving electrons and muons [34].

The main conclusion of the above exercise is that any
�B = 1 operator leads to nucleon decay, no matter the
flavor structure. In the d = 6 case of Eq. (1) it is fur-
thermore always possible to close SM loops in order to
generate a two-body nucleon decay. These might not al-
ways be the dominant decay modes, but in light of the
clean decay channels they are clearly the preferred way to
search for the operators of Eq. (1). This picture changes
once we consider �B = 1 operators of mass dimension
d > 6 as we discuss below.

B. Operator dimension d > 6

Assuming a �B = 1 operator of mass dimension d � 6
with coe�cient ⇤4�d we can estimate the amplitude for
an k-body nucleon decay as M ⇠ md�k�1

p ⇤4�d and the
decay width [35]

�(N ! k particles) ⇠
25�4k⇡3�2k

2mp

m2k�4
p |M|

2

(k � 1)!(k � 2)!
, (4)

neglecting the final-state masses and possible symmetry
factors (see Ref. [36] for loop-suppressed nucleon decays).
The decay is suppressed for large d and large k, e↵ectively
lowering the probed scales ⇤2. Assuming conservatively
that ⇤ should lie above TeV in order to evade LHC con-
straints on the underlying colored mediator particles with

2 We note that the ratio �(N ! k1 particles)/�(N ! k2 particles)
for k1 > k2 could also be larger than 1 and not follow the suppres-
sion just from phase-factor considerations, as shown in Ref. [29].

quark couplings, we find that d > 14 (for k = 2) or d > 6
(for k = 15) in order to push the lifetime above 1030 yr
(which corresponds to a reasonable lower bound on the
total nucleon lifetime, see discussion in Sec. IV). Clearly,
nucleon decays can probe very high-dimensional opera-
tors and very high multiplicity, making it possible and
necessary to go beyond two-body decays mediated by
d = 6 operators.
As already pointed out by Weinberg [16], �B = 1 op-

erators with d > 6 can carry di↵erent total lepton num-
ber �L, which can be used to make them dominant over
the d = 6 operators. Interesting connections between
�B, �L, and the mass dimension of the operator d were
proven in Refs. [37, 38],

d is even $ |�(B � L)| = 0, 4, 8, 12, . . . , (5)

d is odd $ |�(B � L)| = 2, 6, 10, 14, . . . , (6)

as well as the weak inequality

dmin �
9

2
|�B|+

3

2
|�L| (7)

for the minimum dimension dmin of an operator with �B
and�L. For the cases of practical interest we give dmin in
Fig. 1, adapted from Ref. [38]. Below we discuss �B = 1
operators with d > 6 in order to establish the importance
of multi-body nucleon decay searches.
At d = 7 one finds �B = ��L = 1 operators that

induce e.g. n ! e�K+ or p ! e�⇡+K+ [16]. In analogy
to the d = 6 operators from above one can show that all
of these d = 7 operators induce two-body nucleon decays
at some loop level, irrespective of their flavor structure.
While these might not necessarily be the dominant de-
cay modes, they are clearly far easier to constrain exper-
imentally. The currently best constrained channels are
p ! ⌫K+ and n ! `�⇡+, while many other two-body
final states with |�(B � L)| = 2 have unfortunately not
been updated for twenty years (listed below in Tab. I).
At d = 8 one finds�B = �L = 1 operators of the form

uuQL�̄�̄, ddQL��, and dQQ`�� in addition to simply
dressing the d = 6 operators of Eq. (1) with |�|2, where �
is the SM scalar doublet.3 Once again two-body nucleon
decays are the best search channels.
Starting at d = 9 the phenomenology becomes vastly

more interesting. Suppressing all indices and using a very
compact notation, the �B = 1 operators can be written
in the form

O
9
1 = ddd` ¯̀̀̄ , O

9
2 = udd`L̄L̄ ,

O
9
3 = ddd¯̀LL̄ , O

9
4 = ddQ`¯̀L̄ ,

O
9
5 = ddQLL̄L̄ , O

9
6 = dQQ`L̄L̄ ,

O
9
7 = uddL̄�̄�̄� , O

9
8 = uQQL̄�̄�̄�̄ ,

3 Here and in the following we ignore operators that contain deriva-
tives. A full list of these and other operators can be conveniently
obtained using the program Sym2Int [43, 44].

Proton decays in effective Lagrangian approach 

dimension 6  

yiabcd ⇠ 1
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Q, L  → SU(2)L quark, lepton doublets
u ,d, l  → SU(2)L u, d, charged lepton singlets
C  → charge conjugation 
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Fig. 3. Mechanism for weak muon capture.

dicting the proton lifetime, so we de-
scribe it briefly.
Asymptotic freedom. The strength or

coupling constant for the vector boson-
current interaction must be measured ex-
perimentally. The coupling constant de-
pends on the momentum carried by the
gluon, but the dependence on momen-
tum is a prediction of the theory once it
is known at one value of the momentum.
This momentum dependence of the cou-
pling constant is an important and non-
trivial consequence of quantum field the-
ory. This is also true of the fine structure
constant ae of electrodynamics (39). The
value of ae is measured as 1/137.036
when the photon carries zero momentum
Q. As Q2 increases, ae is predicted to in-
crease logarithmically. For example, at
Q2 = Mw2C2 (where Mw = 80 GeV/c2 is
the charged weak vector boson mass) the
value of ae is around 1/129. The strong
coupling as, which characterizes the
gluon-color current coupling of chro-
modynamics, also varies with Q2. Mea-
surements of deep inelastic neutrino
scattering at a Q2 of around 10 (GeV/c)2
lead to a value of as of 0.3 to 0.4. This is
small enough to explain the deep in-
elastic electron scattering results. Unlike
the ae of electrodynamics, the as of chro-
modynamics decreases as Q2 increases.
Large momentum transfer processes
measure the interaction of quarks at
small distances. Therefore, quarks be-
come freer at shorter distances. This is
what is meant by asymptotic freedom.
Correspondingly, as Q2 is decreased a,
grows, and it is of order unity when Q is
a few hundred MeV/c. This measures the
interaction of quarks at a typical ha-
dronic length scale of 10-13 cm. It is rea-
sonable to conjecture that for longer dis-
tances, the interaction becomes so
strong that the color charges are all con-
fined inside hadrons. This also means
that the gluons cannot escape, so the
strong force is short-range. Over the last
few years the problem of understanding
the confinement of color has absorbed
much effort in theoretical physics. The
experimental and theoretical support for
chromodynamics is not yet as firm as
that for the SU2 x Ul theory of the weak
and electromagnetic interactions, but it
is a viable candidate for a strong inter-
21 NOVEMBER 1980

action theory; we shall assume that the
strong interactions are described by a lo-
cal SU3.
We may summarize the description of

elementary particle interactions by
saying it is a Yang-Mills theory based on
a combined local symmetry group,
SU2 X Ul x SUl. The charges associat-
ed with the SU2 x U1 (nonstrong) inter-
actions are called flavors. The strong in-
teractions, which carry no flavor, are
called color interactions. Each of the
three factors of the product SU2 X Ul X
SU" has its own coupling constant that
must be determined experimentally at
some Q2. Of course, it would be nice to
have calculable relations among these
three couplings. It was the search for
such relations that reopened the question
of proton stability.
Currents ofthe known interactions. So

far we have discussed the known inter-
actions, but we have not said much
about the fundamental particles that
make up the currents. (Thus, we need to
expand on the observation that an elec-
tron has an electric current that interacts
with the photon.) A significant contribu-
tion to the currents comes from funda-
mental spin 1/2 particles (fermions); it
has taken many years of extensive ex-
perimentation and theoretical imagina-
tion td identify the spectrum of elemen-
tary fermions. (There are contributions
from other particles to the local currents
that are not discussed here.)
Fundamental fermions that cannot in-

teract strongly because they carry no
color charge are called leptons. They are
observed directly in the laboratory, and
the known spectrum includes the elec-
tron (e), muon (,-), tau (r-), and their
neutrinos, ve, v, and v,. They are color
neutral but all carry flavor charges. The
values of the flavor charges actually de-
pend on the orientation of the particle's
spin relative to its momentum. This is
the origin of parity violation in the weak
interactions.
The fundamental strongly interacting

fermions are the quarks (35), which carry
both flavor and color. Baryons are com-
posed of three quarks, mesons of a quark
and an antiquark. (We ignore virtual
quark pair contributions.) Quarks come
in a number of different flavors, such as
the u (up), d (down), s (strange), and c
(charm). Furthermore, each flavor of
quark can exist in three color states. The
proton, which has electric charge 1, is
made of uud, while the neutron is made
of udd. The u quark carries electric
charge 2/3, and the d quark carries elec-
tric charge -1/3. The color is arranged
so that the proton and neutron are color
neutral.

u \~uN
Neutral mesons

u Y
Proton uii

d < d

d Neutral mesons

Fig. 4. Leptoquark-diquark exchange mecha-
nism for proton decay.

What does all this have to do with pro-
ton decay? We are now ready to draw
analogies between the known inter-
actions and the proton decay processes
that are predicted in some general-
izations of the standard model. The weak
process of muon capture can be de-
scribed in the following intuitive manner.
A muon interacts with an up quark in a
proton through the fundamental coupling
shown diagrammatically in Fig. 3. The
neutrino escapes, and the proton in the
nucleus is changed into a neutron. This
is a flavor interaction-color is not
changed in any part of the process. The
strong interactions are relevant, though,
since the amplitude depends on the way
in which the u and d quarks are bound
into the initial and final nucleons.
We now show how proton decay can

result from an interaction, which is medi-
ated by a newly postulated vector boson
that carries both color and flavor by a
process that is analogous to muon cap-
ture. (No boson in the standard theory
carries both color and flavor.) If the pro-
ton decays, at least one quark must be
transformed into a lepton, since all
lower-mass spin 1/2 systems contain at
least one lepton. Such a vector boson is
called a leptoquark. For example, a lep-
toquark with electric charge -1/3 (or
-4/3), which also carries color, may cou-
ple to a current that transforms an up
quark (or-down quark) into a positron or
positive muon. To complete the process
the leptoquark must couple to another
quark. In the proton, it is possible for the
leptoquark to change that quark into an
antiquark. (The charge - 1/3 leptoquark
might couple a down to an anti-up quark,
the charge -4/3 leptoquark might couple
an up to an anti-up quark.) If it does,
then the vector boson is also called a
diquark. Figure 4 shows two examples in
which a leptoquark is a diquark; electric
charge and color are conserved every-
where in the diagram. The dd or uui sys-

857

on M
ay 27, 2021

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

X,Y gauge bosons  within GUT

Instead of X,Y scalar leptoquarks can mediate this process
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and leptons can be written as
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where ↵, �, � denote the colour, i, j, k, l the SU(2)L in-
dices, [2, 20–23]. The letters u, d, and ` denote the
right-handed up-quark, down-quark, and lepton fields,
while Q and L are the left-handed quark and lepton dou-
blets, respectively. With M , we denote a mass scale of
scalar mediators while Cj couplings have zero dimension.
In the following, we review basic features of tree-level and
loop-level transitions.

III. S1 MEDIATING IN PROTON DECAYS

The couplings of S1 to quarks and charged leptons are
discussed in details in Ref. [24]. Note that this lep-
toquark as a weak singlet can couple to left and right-
handed fermions. The Lagrangian containing the S1 in-
teraction with fermions is
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1 is a symmetric matrix in flavour space [24],

i.e., z
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1 ji, whereas all other matrices are a priori

completely arbitrary. We did not specify colour indexes
in this Lagrangian. As usual, V and U denote the CKM
and PMNS matrices, respectively. After the contraction
in the SU(2) space in this Lagrangian (2), we would con-
centrate on the following terms
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Figure 1. Feynman diagrams for proton decaying into e+ (µ+)
and a pion. The coupling constant of the upper vertex is yRR

1 11

(yRR
1 12) and zRR

1 11 for the lower one.

If instead of right-handed couplings we use left-handed
for this process from Lagrangian in Eq. (2), we derive the
e↵ective Lagrangian
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Obviously, for the n ! ⌫ tran-
sition, it is then L
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eff ((udd)⌫) =
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sider also the proton decay to µ by simply replacing
y

LL
1 11 ! y

LL
1 12.

There is the S3 ⌘ (3̄, 3, 1/3) leptoquark, a triplet of
weak interaction that leads to the same chiral structure
for the e↵ective Lagrangian as in the case S1 leptoquark,
with left-handed fermionic couplings.

IV. LOOP DIAGRAMS IN �B = 1
TRANSITIONS

We discussed already in Ref. [9] loop-induced proton
decay diagrams in the case of S̃1 = (3,1, 4/3), presented
in Fig. IV. Such decay mechanism is possible for the S̃1
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This result is not sensitive to exact value of the nucleon matrix elements and running of relevant coeffi-

cient. It thus represents firm prediction within the framework of the minimal flipped SU(5) with symmetric

Yukawa couplings.

VI. HIGHER ORDER CONTRIBUTIONS

In the SU(5) framework the states (3̄,1, 4/3) and �3
� (3,3, �1/3) violate B and L and do not

contribute to dimension-six proton decay operators at tree-level. Antisymmetry of their Yukawa couplings

to two up quarks only allows for dimension-six operators involving c or t quarks that produce B number

violation in charm or top decays [45], but these operators do not affect the proton stability due to large

masses of c and t quarks. However, an additional W boson exchange opens decay channels with final states

that are kinematically accessible to proton decay.

A. Box mediated dimension-six operator from (3̄,1, 4/3) � 45

One possibility is to make a box diagram with a single W exchange leading to the d = 6 operator, as

shown on Fig. 1. In the literature, proton decay mediation involving W boson exchanges were considered
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FIG. 1. Box diagrams with (3̄,1, 4/3) state that generate d = 6 operators of flavor uud` and udd⌫.

in [45–47]. We calculate the box diagram in the approximation where we neglect external momenta, how-

ever, we keep both virtual fermions massive since the right-handed � interactions force chirality flips on

internal fermion lines and thus the diagram would vanish if both fermions were massless. Evaluation of the

diagrams with W and would-be Goldstones leads to gauge invariant and finite amplitude. Then we find that
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Figure 2. p ! ⇡0`+ mediated by S̃1 in the box.

masses few orders orders of magnitude lower than the
GUT scale ⇠ 1016 GeV. The main message of the study
in Ref. [9] is that S̃1 cannot have mass in the TeV region.
Namely, the up(down)-like quark masses have a hierar-
chical structure preventing the cancellation of two box
amplitudes as explained in Ref. [9].
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dices, [2, 20–23]. The letters u, d, and ` denote the
right-handed up-quark, down-quark, and lepton fields,
while Q and L are the left-handed quark and lepton dou-
blets, respectively. With M , we denote a mass scale of
scalar mediators while Cj couplings have zero dimension.
In the following, we review basic features of tree-level and
loop-level transitions.

III. S1 MEDIATING IN PROTON DECAYS

The couplings of S1 to quarks and charged leptons are
discussed in details in Ref. [24]. Note that this lep-
toquark as a weak singlet can couple to left and right-
handed fermions. The Lagrangian containing the S1 in-
teraction with fermions is

L =y
LL
1 ijQ̄

C i,a
L S1✏

ab
L

j,b
L + y

RR
1 ij ū
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If instead of right-handed couplings we use left-handed
for this process from Lagrangian in Eq. (2), we derive the
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There is the S3 ⌘ (3̄, 3, 1/3) leptoquark, a triplet of
weak interaction that leads to the same chiral structure
for the e↵ective Lagrangian as in the case S1 leptoquark,
with left-handed fermionic couplings.

IV. LOOP DIAGRAMS IN �B = 1
TRANSITIONS

We discussed already in Ref. [9] loop-induced proton
decay diagrams in the case of S̃1 = (3,1, 4/3), presented
in Fig. IV. Such decay mechanism is possible for the S̃1
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� (3,3, �1/3) violate B and L and do not

contribute to dimension-six proton decay operators at tree-level. Antisymmetry of their Yukawa couplings

to two up quarks only allows for dimension-six operators involving c or t quarks that produce B number

violation in charm or top decays [45], but these operators do not affect the proton stability due to large

masses of c and t quarks. However, an additional W boson exchange opens decay channels with final states

that are kinematically accessible to proton decay.

A. Box mediated dimension-six operator from (3̄,1, 4/3) � 45

One possibility is to make a box diagram with a single W exchange leading to the d = 6 operator, as

shown on Fig. 1. In the literature, proton decay mediation involving W boson exchanges were considered
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in [45–47]. We calculate the box diagram in the approximation where we neglect external momenta, how-

ever, we keep both virtual fermions massive since the right-handed � interactions force chirality flips on

internal fermion lines and thus the diagram would vanish if both fermions were massless. Evaluation of the

diagrams with W and would-be Goldstones leads to gauge invariant and finite amplitude. Then we find that
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Figure 2. p ! ⇡0`+ mediated by S̃1 in the box.

masses few orders orders of magnitude lower than the
GUT scale ⇠ 1016 GeV. The main message of the study
in Ref. [9] is that S̃1 cannot have mass in the TeV region.
Namely, the up(down)-like quark masses have a hierar-
chical structure preventing the cancellation of two box
amplitudes as explained in Ref. [9].
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Scalar LQ

Vector LQ

Important: scalar LQ should have di-quark couplings  that proton decays at the tree level

(dim-6, dim-9,…)

dim-6
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(SU(3), SU(2), U(1)) Spin Symbol Type F
(3,3, 1/3) 0 S3 LL (SL

1 ) �2
(3,2, 7/6) 0 R2 RL (SL

1/2), LR (SR

1/2) 0

(3,2, 1/6) 0 R̃2 RL (S̃L

1/2), LR (S̃L

1/2) 0

(3,1, 4/3) 0 S̃1 RR (S̃R

0 ) �2

(3,1, 1/3) 0 S1 LL (SL

0 ), RR (SR

0 ), RR (SR

0 ) �2

(3,1,�2/3) 0 S̄1 RR (S̄R

0 ) �2

(3,3, 2/3) 1 U3 LL (V L

1 ) 0
(3,2, 5/6) 1 V2 RL (V L

1/2), LR (V R

1/2) �2

(3,2,�1/6) 1 Ṽ2 RL (Ṽ L

1/2), LR (Ṽ R

1/2) �2

(3,1, 5/3) 1 Ũ1 RR (Ṽ R

0 ) 0

(3,1, 2/3) 1 U1 LL (V L

0 ), RR (V R

0 ), RR (V R

0 ) 0

(3,1,�1/3) 1 Ū1 RR (V̄ R

0 ) 0

Table 1: List of scalar and vector LQs. See text for details.

under the SM gauge group as the classification criterion. In the first column
of Table 1 we explicitly specify the SM transformation properties that can be
easily understood on purely group theoretical grounds as follows.

All quarks (leptons) are triplets (singlets) with regard to SU(3). This means
that all LQs should transform as 3-dimensional representations of SU(3) in
order for quark–lepton–LQ contraction(s) to be invariant under the SU(3) group
transformations. In group theoretical terms one uses a singlet (1) of SU(3) in
decomposition of the direct product 3 ⌦ 1 ⌦ 3 ⌘ 8 � 1 that corresponds to
quark–lepton–LQ contraction(s). The dimensionality of SU(3) representation
is thus the same for all LQs. They are all triplets of SU(3). One consequence
of this property is that some LQs can couple to a quark-quark pair while not a
single LQ can couple to a lepton–lepton pair.

The LQ dimensionality assignment under SU(2) is less trivial if compared
with the SU(3) case since both quarks and leptons are either singlets (1) or
doublets (2) of SU(2). Quark–lepton contractions can then be of triplet, dou-
blet, and singlet nature in SU(2) space since 2 ⌦ 2 ⌘ 3 � 1, 2 ⌦ 1 ⌘ 2, and
1 ⌦ 1 ⌘ 1. These representations need to be contracted with LQs that have
the same SU(2) dimensionality in order to create gauge invariant terms. LQs
can thus be triplets, doublets, and singlets of SU(2). The dimensionality under
SU(2) can accordingly be used to distinguish between different LQs. This cor-
responds to a subscript of the LQ symbol in the third column of Table 1. If LQ
multiplets have the same dimensionality under SU(2) but differ in hyper-charge
U(1) one needs to introduce additional markings — a tilde or a bar — above
the LQ symbol. For example, there are three scalar multiplets that are singlets
under SU(2). We accordingly denote them as S1, S̃1, and S̄1. This particular
notation was introduced in Ref. [9] for all LQs except for S̄1 and Ū1 states. The
only leptons that S̄1 and Ū1 can couple to are right-chiral neutrinos that are not
part of the SM field content. This is the reason why S̄1 and Ū1 were omitted
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F- fermion number
F=0 proton stable

Tree-level renormalizable interactions are not the 
only possible source of baryon number violation. It 
might also occur through higher-dimensional 
operators. 
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F = 3B + L

Proton decay to charged leptons 2

channel limit/1030 yrs operators

n ! `+↵ `
�
� ⌫� 79–257 [9] O

9
1–O

9
9

N ! K`+↵ `
�
� ⌫� – O

9
8–O

9
14

n ! K+`+↵ `
�
� `

�
� – O

9
15–O

9
16

TABLE I: Nucleon decay channels via the d = 9 operators of
Eq. (1). Here, N = (p n)T and K = (K+ K0)T .

O
9
11 = (QL)3(L̄L̄)3(dd) , O

9
12 = (¯̀Q)(L̄`)(dd) ,

O
9
13 = (L̄L̄)(u`)(dd) , O

9
14 = (L̄u)(L̄`)(dd) ,

O
9
15 = (¯̀L)(L̄d)(dd) , O

9
16 = (¯̀̀̄ )(`d)(dd) . (1)

Here, Q (L) denotes the left-handed quark (lepton) dou-
blet and u, d, and ` the right-handed quarks and lepton
fields. We omitted all generation indices and ✏ijk color
contractions, but indicated in subscripts the size of the
non-trivial SU(2)L multiplet the fermion bilinear forms.
These operators give rise to the dominant nucleon decays
of Tab. I; there are no three-body PD modes, but O

9
1–

O
9
9 give n ! `

+
↵ `

�
� ⌫� , on which there are limits from

IMB [9]. The other operators require an s quark to
survive the color anti-symmetrization, which then yield
four-body decay modes involving kaons to be dominant,
including the fully-visible n ! K

+
`
+
↵ `

�
� `

�
� and partly

visible N ! K`
+
↵ `

�
� ⌫� channels.

In order for these operators/channels to dominate over
the d = 7, �B = ��L channels [5], they need to carry
lepton flavor numbers that the lower ones cannot have.
We find the corresponding list of dominant decays to be

n ! e
+
µ
�
⌫µ,⌧ , n ! µ

+
e
�
⌫e,⌧ ,

N ! Ke
+
µ
�
⌫µ,⌧ , N ! Kµ

+
e
�
⌫e,⌧ , (2)

n ! K
+
e
+
µ
�
µ
�
, n ! K

+
µ
+
e
�
e
�
.

One can readily identify the conserved symmetries for
each decay. Note that water Cherenkov detectors such
as SK basically cannot determine the electric charge of
the lepton, nor observe the outgoing neutrino, making it
impossible to distinguish some of these channels.
Several modes of Tab. I were already discussed to some

degree in the literature because they arise in SU(4)C
unification models [10] and in the R-parity violating
MSSM [11–13]. A recent discussion of the latter case can
be found in Ref. [14], where it is claimed that the kaon
modes typically dominate. The corresponding lifetimes
for massless leptons are [14]

�(n ! `
+
↵ `

�
� ⌫�) ⇠

�
2
hm

5
n

6144⇡3⇤10
'

(320TeV/⇤)10

3⇥ 1032 yrs
, (3)

�(N ! K`
+
↵ `

�
� ⌫�) ⇠

(100TeV/⇤)10

3⇥ 1032 yrs
, (4)

with the hadronic matrix element �h ' 0.014GeV3 [15]
and ignoring order-one prefactors that depend on the ac-
tual operator O9

j/⇤
5 and lepton masses. Direct searches

channel (�Le,�Lµ) limit/years

p ! e+e+e� (1, 0) 793⇥ 1030

p ! e+µ+µ� (1, 0) 359⇥ 1030

p ! µ+e+e� (0, 1) 529⇥ 1030

p ! µ+µ+µ� (0, 1) 675⇥ 1030

p ! µ+µ+e� (�1, 2) 359⇥ 1030

p ! e+e+µ� (2,�1) 529⇥ 1030

TABLE II: 90% C.L. limits on PD branching ratios into three
charged leptons [9]. The middle column shows the lepton
flavor quantum numbers violated in the decay.

for these decays are either non-existent or rather old,
thus we strongly encourage SK to search for the modes
of Tab. I, in particular the flavor channels of Eq. (2).

DIMENSION 10 OPERATORS

There are two classes of d = 10 operators with three
leptons: 1) �B = �L, which can give rise to the six PD
channels p ! `

+
↵ `

+
� `

�
� (Tab. II); 2) �B = ��L/3 which

lead to four-body decays such as n ! ⌫⌫`⇡
+ [5]. The for-

mer class is particularly spectacular because it involves
only three particles in the final state, all of which are
charged leptons. The sensitivity of neutrino detectors to
such a final state is expected to be as good or even better
than for the usual two-body decays. This was in particu-
lar the case 20 years ago [9], the last time these channels
were searched for. Therefore we strongly encourage ex-
periments such as SK to perform dedicated searches for
these channels.

We want to especially emphasize this for the 2 chan-
nels where both anti-leptons have the same flavor, p !

e
+
e
+
µ
� and p ! µ

+
µ
+
e
�, because they can be singled

out by a symmetry, Le+2Lµ+xL⌧ and 2Le+Lµ+xL⌧ ,
respectively (with arbitrary value of x). Some d = 9 op-
erators/decays (Eq. (2)) also conserve one of these flavor
symmetries, but they break B � L and conserve B + L,
opposite to the d = 10 operators. Thus, depending on the
particle content and/or symmetries of the UV physics at
the origin of these operators, it is perfectly possible that
only the d = 10 operators would be generated, see the
explicit example of UV model below. Note that the 4 PD
channels which involve 2 di↵erent anti-leptons (Tab. II)
cannot be singled out from the two-body decays where
the (flavor singlet) e

+
e
� or µ

+
µ
� pair is replaced by a

(flavor singlet) ⇡0.
Considering d = 10 operators without a covariant

derivative, the operators relevant for the channels of
Tab. II involve a SM scalar doublet field H. We find:

O
10
1,2 = (QQ)1,1 (QL)1,3 (L̄`H̄)1,3 ,

O
10
3,4 = (QQ)1,1 (QL)1,3 (¯̀LH)1,3 ,

O
10
5 = (QQ)1 (LL)3 (¯̀QH)3 ,
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O
10
6 = (QQ)1 (``)1 (¯̀QH̄)1 ,

O
10
7 = (QQ)1 (LL)3 (L̄uH)3 ,

O
10
8 = (QQ)1 (``)1 (L̄uH̄)1 ,

O
10
9 = (QQ)1 (u`)1 (L̄`H̄)1 ,

O
10
10 = (QQ)1 (u`)1 (¯̀LH)1 ,

O
10
11,12 = (QL)1,3 (QL)3,3 (¯̀QH)3,3 ,

O
10
13,14 = (QL)1,3 (QL)3,3 (L̄uH)3,3 ,

O
10
15,16 = (QL)1,3 (u`)1,1 (¯̀QH)1,3 ,

O
10
17,18 = (QL)1,3 (d`)1,1 (¯̀QH̄)1,3 , (5)

O
10
19 = (QL)3 (u`)1 (L̄uH)3 ,

O
10
20,21 = (QL)1,3 (d`)1,1 (L̄uH̄)1,3 ,

O
10
22,23 = (QL)1,3 (u`)1,1 (L̄dH̄)1,3 ,

O
10
24,25 = (QL)1,3 (ud)1,1 (L̄`H̄)1,3 ,

O
10
26,27 = (QL)1,3 (ud)1,1 (¯̀LH)1,3 ,

O
10
28 = (LL)3 (ud)1 (¯̀QH)3 ,

O
10
29 = (ud)1 (``)1 (¯̀QH̄)1 ,

O
10
30 = (u`)1 (d`)1 (¯̀QH̄)1 ,

O
10
31 = (LL)3 (ud)1 (L̄uH)3 ,

O
10
32 = (ud)1 (u`)1 (L̄`H̄)1 ,

O
10
33 = (ud)1 (``)1 (L̄uH̄)1 ,

O
10
34 = (u`)1 (d`)1 (L̄uH̄)1 ,

O
10
35 = (ud)1 (u`)1 (¯̀LH)1 ,

O
10
36,37 = (QL)1,3 (QL)1,3 (¯̀QH)1,1 ,

O
10
38,39,40 = (QL)1,1,3 (QL)1,3,3 (L̄dH̄)1,3,1 ,

O
10
41 = (u`)1 (u`)1 (l̄QH)1 ,

O
10
42 = (u`)1 (u`)1 (L̄dH̄)1 ,

where the last 7 operators are only relevant for the chan-
nels p ! e

+
µ
+
e
� and p ! e

+
µ
+
µ
�.

With the above operators O10
j /⇤6 we can calculate the

induced PD rate, which for massless leptons is simply [14]

�(p ! `
+
↵ `

+
� `

�
� ) ⇠

hHi
2
�
2
hm

5
p

6144⇡3⇤12
'

(100TeV/⇤)12

1033 yrs
. (6)

Judging by the limits on other three-body PDs [16, 17],
a lifetime of this order is in reach of SK, thus prob-
ing scales ⇠ 100TeV. The mediator masses in a UV-
complete model can be even lower than this scale, since
⇤ is also suppressed by couplings. SU(2)-related PDs
into less-visible modes such as p ! `

+
⌫`0⌫`00 have been

discussed in Ref. [18] but are of no interest here.
To reiterate, the PD channel p ! e

+
e
+
µ
� (µ+

µ
+
e
�)

could be dominant over all commonly discussed modes,
as it is described by the lowest-dimensional operator that
conserves B � L, L⌧ , and Le + 2Lµ (Lµ + 2Le). An
analogous symmetry argument can be used to forbid PD
operators up to d = 12, only allowing, for example, for

B)

S1 F S2

A)

S1

S2
S3

FIG. 1: Topologies relevant for nucleon decay into three
leptons. The external lines are labeled by three quarks and
three leptons, which fixes the SU(3)⇥U(1)EM charges of the
internal scalars Sj and fermion F .

the PD operator uudeeeµ̄µ̄/⇤8. This leads to a PD scale
as low as ⇤ ⇠ 10TeV.

UV COMPLETION

Nucleon decay into three leptons via the d = 9, 10 op-
erators discussed above can at tree-level proceed through
the exchange of heavy particles along 2 di↵erent types of
topologies, see Fig. 1. Topology A involves new heavy
scalars, whereas B also involves a new heavy fermion.
Emission of a kaon involves an extra spectator quark that
does not change the discussion. (We omit an analogous
discussion involving spin-1 mediators.) For the d = 10
operators there are various places in the diagram where
the SM doublet H can be inserted: on an external leg, on
an internal propagator or on the trilinear scalar coupling
in the diagram with topology A, making it a quartic cou-
pling. We will not list explicitly all these possibilities,
but instead give the possible quantum numbers of the
heavy particles for all these possibilities.

First, the scalars along both topologies always couple
to 2 SM fermions, and thus must have the corresponding
quantum numbers. One finds that they are either SU(2)L
singlet di-quarks (coupling to Q̄

c
Q, ūc

d, d̄cd), di-leptons
(coupling to ¯̀c`, ¯̀L, L̄c

L) or LQs [19, 20] (coupling to ¯̀dc,
¯̀uc, L̄Qc, ūL, Q̄`, d̄L), see also [21]. For the processes
above involving a kaon, one of the Q or d quark field is
intended to be of second generation. The present LHC
lower bounds on the masses of these particles typically
lie within 1–1.5TeV for LQs and around 6–7TeV for di-
quarks [22].

As for the heavy fermion appearing in the diagram with
topology B, it can be an SU(3)C singlet with electric
charge 0 or 1 or a triplet with electric charge possibly
equal to any multiple of 1/3 between�7/3 and 7/3 except
for 0, ±1, and ±2. Under SU(2)L all these particles
can be singlet, doublet or triplet, depending in particular
for the d = 10 operators on where the Higgs doublet
insertion is in the diagram. For more specific predictions
we now turn to a UV complete example.

F - new 
fermion

2

X

q

q

l

q

FIG. 1: �B = 1 and �L = 1 scalar exchange.

d

e

X

u

c s

W
e

⌫

FIG. 2: Feynman diagram that contributes to tree-level p !
K+e+e�⌫̄ from (3, 1,�4/3) scalar exchange.

ing possible scalar representations and Yukawa couplings are
listed in Table I. We have assumed there are no right-handed
neutrinos (⌫R) in the theory.

None of these scalars induces baryon number violation on
their own, so we consider minimal models with the require-
ment that only two unique sets of scalar quantum numbers
from Table I are included, though a given set of quantum num-
bers may come with multiple scalars.

Baryon number violation will arise from terms in the scalar
potential, so we need to take into account just the models
whose scalar quantum numbers are compatible in the sense
that they allow scalar interactions that violate baryon num-
ber. For scalars coupling to standard model fermion bilinears
there are three types of scalar interactions which may violate
baryon number: 3-scalar X1X1X2, 4-scalar X1X1X1X2, and
3-scalar with a Higgs X1X1X1H or X1X1X2H , where the

operator SU(3)⇥ SU(2)⇥ U(1)

XQQ,Xud (6̄, 1,�1/3)

XQQ (6̄, 3,�1/3)

Xdd (3, 1, 2/3), (6̄, 1, 2/3)
Xuu (6̄, 1,�4/3)

XQ̄e (3, 2, 7/6)

XL̄u (3̄, 2,�7/6)

XL̄d (3̄, 2,�1/6)

XLL (1, 1, 1), (1, 3, 1)
Xee (1, 1, 2)

TABLE I: Possible interaction terms between the scalars and fermion bilin-
ears along with the corresponding quantum numbers.

h�
0
i

X2

X1

X1

X1

X1

X1

X2

X1

X1

X2

FIG. 3: Scalar interactions which may generate baryon number vio-
lation.

X1

X1
X1

d

e
+

⌫̄

d ⌫̄

d

hHi

FIG. 4: Interaction which leads to proton decay, p ! ⇡+⇡+e�⌫⌫,
for X1 2 (3̄, 2,�1/6).

Higgs gets a vacuum expectation value (vev) (Fig. 3).
Actually, the simplest possible model violating baryon

number through the interaction X1X1X1H includes just one
new scalar (3̄, 2,�1/6), but it gives proton decay via p !

⇡+⇡+e�⌫⌫ (Fig. 4). The other two baryon number violat-
ing models with an interaction term X1X1X2H are: X⇤

1 2

(3, 1,�1/3), X2 2 (3̄, 2,�7/6) and X1 2 (3, 1,�1/3),
X⇤

2 2 (3̄, 2,�1/6). As argued earlier, such quantum numbers
for X1 also induce tree-level proton decay, so we disregard
them.

We now consider models with a 3-scalar interaction
X1X1X2. A straightforward analysis shows that there are
only four models which generate baryon number violation
via a 3-scalar interaction without proton decay. We enumer-
ate them and give the corresponding Lagrangians below. All
of these models give rise to processes with �B = 2 and
�L = 0, but only the first three models contribute to nn̄ os-
cillations at tree-level due to the symmetry properties of the
Yukawas. Note that a choice of normalization for the sextet
given by,

(X↵�) =

0

B@
X̃11 X̃12/

p
2 X̃13/

p
2

X̃12/
p
2 X̃22 X̃23/

p
2

X̃13/
p
2 X̃23/

p
2 X̃33

1

CA (1)

leads to canonically normalized kinetic terms for the color
singlet elements X̃↵� and the usual form of the scalar
propagator with symmetrized color indices. Unless otherwise
stated, we will be using 2-component spinor notation. Paren-
theses indicate contraction of 2-component spinor indices to
form a Lorentz singlet.

Arnold et al., 1212.455, Murgui &Wise, 
2105.14029 found if three  LQ X1   

are in the same representation that this 
amplitude vanishes.



Triple-leptoquark interactions for tree- and loop-level proton decays 
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q q′
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! = !′q q′

∆Q ∆Q′

∆Q′′

∆Q′′

∆Q ∆Q′

κ λ

κ λ

〈H〉

〈H〉

Two different proton decay topologies

- with or without a Higgs vacuum expectation value

-∆Q, ∆Qʹ, and ∆Qʹʹ are scalar leptoquark mass eigenstates with electric charges Q, 
Qʹ, and Qʹʹ, respectively. 

Triple-LQs  - scalars only!



Leptoquark multiplets Yukawa interactions

R2 = (3,2, 7/6) �(yLR2
)ij ūR iR2i⌧2Lj + (yRR2

)ij Q̄iR2eRj + h.c.

R̃2 = (3,2, 1/6) �(yL
R̃2
)ij d̄R iR̃2i⌧2Lj + h.c.

S1 = (3̄,1, 1/3) (yLS1
)ij Q̄C

i i⌧2S1Lj + (yRS1
)ij ūC

R iS1eRj + h.c.

S3 = (3̄,3, 1/3) (yLS3
)ij Q̄C

i i⌧2(~⌧ · ~S3)Lj + h.c.

S̃1 = (3̄,1, 4/3) (yR
S̃1
)ij d̄CR iS̃1eRj + h.c.

Table 1.1: Scalar leptoquark multiplets and their interactions with the SM quark-lepton
pairs.

of the leptoquark phenomenology [27]. We suppress both the SU(3) and SU(2) indices
in Table 1.1 for compactness and opt to show the flavor indices i, j(= 1, 2, 3) instead. We
furthermore use ~⌧ = (⌧1, ⌧2, ⌧3) to denote Pauli matrices and introduce ~S3 = (S1

3 , S
2
3 , S

3
3)

for the SU(2) components of the S3 leptoquark multiplet. Throughout this work we
consider the scenarios where scalar leptoquark multiplets couple solely to the quark-
lepton pairs. If the leptoquark multiplets could couple directly to the quark-quark pairs
we assume such interactions to be either suppressed or altogether absent.

The paper is organised as follows. In Sec. 2 we study all possible cubic and quartic
scalar interactions if one adds to the SM particle content up to three di↵erent scalar
leptoquark multiplets, specify these interactions at the SU(3)⇥U(1)em level, and outline
main proton decay channels these interactions generate for the two aforementioned decay
topologies. In Sec. 3 we first demonstrate that the one-loop level topology is much
more relevant than the tree-level one when it comes to the proton decay signatures. We
subsequently present detailed analysis of the e↵ects of the triple-leptoquark interactions
on the matter stability within one representative scenario to quantitatively support our
claim, where the scenario in question simultaneously features the tree-level topology that
yields three-body proton decay and the one-loop level topology that induces two-body
proton decay. There we also explicitly show how to extract limit on the energy scale
associated with both of these topologies using the most accurate theoretical input and
the latest experimental data on partial proton decay lifetimes. We briefly conclude in
Sec. 4.

2 Classification

We consider extensions of the SM particle content with up to three di↵erent scalar lep-
toquark multiplets generically denoted with �, �0, and �00 and study all possible cubic
and quartic contractions of the generic forms �-�0-�00 and �-�0-�00-H, respectively, that
yield triple-leptoquark interactions �Q-�Q0

-�Q00
and �Q-�Q0

-�Q00
-hHi. Our aim is to

specify the main tree- and one-loop level proton decay channels with topologies of Fig. 1.1
that can originate from these types of interactions and the associated Yukawa couplings
of Table 1.1. Our convention for the transformation properties of the Higgs boson doublet
under the SM gauge group SU(3)⇥SU(2)⇥U(1) is such that H = (1,2, 1/2), where we
denote its vacuum expectation value with hHi = (0 v/

p
2)T .

If one only demands invariance of the cubic and quartic contractions under the SU(2)⇥

2

Scalar leptoquark multiplets and their interactions with the SM quark-lepton pairs. 

Classification

The SM extended  with up to three different scalar leptoquark multiplets,
denoted with ∆, ∆ʹ, and ∆ʹʹ and study all possible cubic and quartic contractions 
∆-∆ʹ-∆ʹʹ and ∆-∆ʹ-∆ʹʹ-H,  yield  to 3-LQ interactions and 3-LQ ⟨H⟩.

scalars



SU(3)⇥ SU(2)⇥ U(1) level SU(3)⇥ U(1)em level Ref.

(a) R̃
T
2 i⌧2R̃2S

⇤
1 �2✏abcR̃

�1/3
2a R̃

2/3
2b S

�1/3
1c [17]

(b) R
T
2 i⌧2R̃2S̃

⇤
1 ✏abc

⇣
R

5/3
2a R̃

�1/3
2b S̃

�4/3
1c �R

2/3
2a R̃

2/3
2b S̃

�4/3
1c

⌘
[17]

(c) �H
†
i⌧2(~⌧ · ~S3)⇤i⌧2R2S

⇤
1 �

vp
2
✏abc

⇣
�S

�1/3
3a R

2/3
2b S

�1/3
1c +

p
2S�4/3

3a R
5/3
2b S

�1/3
1c

⌘
[28]

(d) �H
†
i⌧2(~⌧ · ~S3)⇤(~⌧ · ~S3)⇤i⌧2R2 �v

p
2✏abc

⇣p
2S�1/3

3a S
�4/3
3b R

5/3
2c � S

�4/3
3a S

2/3
3b R

2/3
2c

⌘
[20]

(e) �H
T
i⌧2R2S

⇤
1 S̃

⇤
1 ��

vp
2
✏abcR

5/3
2a S

�1/3
1b S̃

�4/3
1c [28]

(f) �H
T (~⌧ · ~S3)⇤i⌧2R2S̃

⇤
1 �

vp
2
✏abc

⇣p
2S2/3

3a R
2/3
2b S̃

�4/3
1c + S

�1/3
3a R

5/3
2b S̃

�4/3
1c

⌘
[28]

(g) �H
T (~⌧ · ~S3)⇤i⌧2R̃2S

⇤
1 �

vp
2
✏abc

⇣p
2S2/3

3a R̃
�1/3
2b S

�1/3
1c + S

�1/3
3a R̃

2/3
2b S

�1/3
1c

⌘
[28]

(h) �H
†(~⌧ · ~S3)⇤(~⌧ · ~S3)⇤i⌧2R̃2 �v

p
2✏abc

⇣p
2S2/3

3a S
�1/3
3b R̃

�1/3
2c + S

�4/3
3a S

2/3
3b R̃

2/3
2c

⌘
[28]

Table 2.1: Cubic and quartic leptoquark multiplet contractions at the SU(3)⇥SU(2)⇥
U(1) level and the associated triple-leptoquark interactions at the SU(3)⇥U(1)em level.

U(1) part of the SM gauge group, one obtains the following potentially viable terms:
R̃2-R̃2-S⇤

1 [17], R̃2-R̃2-S⇤
3 [17], R2-R̃2-S̃⇤

1 [17], R̃2-R̃2-R̃2-H⇤ [18], S1-S1-R⇤
2-H [19], S1-

S3-R⇤
2-H [28], S3-S3-R⇤

2-H [20], S1-S̃1-R⇤
2-H

⇤ [28], S3-S̃1-R⇤
2-H

⇤ [28], S1-S1-R̃⇤
2-H

⇤ [19],
S1-S3-R̃⇤

2-H
⇤ [28], and S3-S3-R̃⇤

2-H
⇤ [28]. A thing to note is that it is always possible to

replace S1’s with S3’s and vice versa in aforementioned contractions. If one furthermore
demands invariance of these contractions under the SU(3) gauge symmetry of the SM,
one can demonstrate that the contractions R̃2-R̃2-R̃2-H⇤, S1-S1-R⇤

2-H, R̃2-R̃2-S⇤
3 , and S1-

S1-R̃⇤
2-H

⇤ all yield zero [28]. These contractions vanish due to a simple fact that they all
come out to be symmetric under the exchange of two identical electric charge eigenstates
which is in direct conflict with the antisymmetric nature of these contractions in the
SU(3) space. Of course, it is always possible to have a new physics scenario where the
scalars that transform in the same manner under the SM gauge group are not identical to
each other. If that is the case, one would need to revisit those contractions that otherwise
would have trivially vanished such as R̃2-R̃2-R̃2-H⇤.

We summarize all non-trivial cubic and quartic scalar contractions that yield triple-
leptoquark interactions in Table 2.1 at both the SU(3)⇥SU(2)⇥U(1) and SU(3)⇥U(1)em
levels and specify, to the best of our knowledge, where and when a given contraction has
been featured in the literature for the first time. There are two cubic and six quartic
contractions, all in all, that generate triple-leptoquark interactions of our interest. The
classification presented in Table 2.1 nicely dovetails an all-encompassing classification of
invariant contractions between two scalar leptoquark multiplets and either one or two
Higgs boson doublets [1].

Note that the superscript in the second column of Table 2.1 denotes electric charge
Q of leptoquark �Q in units of electric charge of positron, while a, b, and c are the
leptoquark SU(3) indices. We write �Q⇤

⌘ ��Q in the second column of Table 2.1
for simplicity, where we also define the electric charge eigenstates of S3 leptoquark via
S
1/3
3 = S

3
3 , S

4/3
3 = (S1

3 � iS
2
3)/

p
2, and S

�2/3
3 = (S1

3 + iS
2
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p
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We can finally specify main proton decay mediating processes for both topologies of
Fig. 1.1 using the Yukawa couplings presented in Table 1.1 together with the cubic and
quartic interaction terms given in Table 2.1. These results are shown in Table 2.2 under
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Table 2.1: Cubic and quartic leptoquark multiplet contractions at the SU(3)⇥SU(2)⇥
U(1) level and the associated triple-leptoquark interactions at the SU(3)⇥U(1)em level.
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levels and specify, to the best of our knowledge, where and when a given contraction has
been featured in the literature for the first time. There are two cubic and six quartic
contractions, all in all, that generate triple-leptoquark interactions of our interest. The
classification presented in Table 2.1 nicely dovetails an all-encompassing classification of
invariant contractions between two scalar leptoquark multiplets and either one or two
Higgs boson doublets [1].

Note that the superscript in the second column of Table 2.1 denotes electric charge
Q of leptoquark �Q in units of electric charge of positron, while a, b, and c are the
leptoquark SU(3) indices. We write �Q⇤
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We can finally specify main proton decay mediating processes for both topologies of
Fig. 1.1 using the Yukawa couplings presented in Table 1.1 together with the cubic and
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Figure 1.1: Two di↵erent proton decay topologies generated by the triple-leptoquark
interactions. Both can be with or without a Higgs vacuum expectation value leg insertion.
q’s and `’s denote generic quarks and leptons of the SM while �Q, �Q0

, and �Q00
are

scalar leptoquark mass eigenstates with electric charges Q, Q0, and Q
00, respectively.

Both topologies of Fig. 1.1 have two di↵erent realisations. One is with and the other
without the contraction with the Higgs boson doublet, where the diagrams that corre-
spond to the former scenario include a vacuum expectation value leg insertion that is
rendered in grey in both panels of Fig. 1.1.

Even though there are already several phenomenological studies [16–23] of the tree-
level proton decay topology that is depicted in the left panel of Fig. 1.1 there is not a
single one, to the best of our knowledge, that looks at the one-loop level baryon number
violating topology shown in the right panel. We intend to remedy that and, in the process,
demonstrate that the one-loop level topology is much more relevant than the tree-level
one regardless of the type of the SM charged fermion that propagates in the loop if and
when these two topologies coexist. Our analysis is accordingly similar in spirit to studies
of Refs. [24–26], where a possibility to have dominance of the loop-level processes over
the tree-level ones, also in the context of baryon number violation, has been investigated.
Our study is applicable whenever ` = `

0 and, consequentially, q = q
0 in Fig. 1.1. We

also provide a comprehensive list of the leading-order proton decay channels for all non-
trivial cubic and quartic contractions involving three scalar leptoquark multiplets that
generate triple-leptoquark interactions of interest, where in the latter case one of the
scalar multiplets is the Higgs boson doublet of the SM.

It is possible to have a new physics scenario where the tree-level proton decay topology
exists but the one-loop level one does not. This happens, for instance, if the leptoquarks
�Q and �Q0

couple to di↵erent leptons [20, 21], i.e., ` 6= `
0 in Fig. 1.1. However, it is

also possible to have a scenario where the tree-level proton decay topology is completely
absent whereas the one-loop level one is not only present but also additionally enhanced
due to propagation of, for example, the tau lepton in the loop.

Scalar leptoquark multiplets relevant for our study and the associated couplings are
specified in Table 1.1, where we also explicitly denote transformation properties of these
multiplets under the SM gauge group SU(3)⇥ SU(2)⇥ U(1). The notation that we use
in Table 1.1 is self-explanatory and closely follows the notation of a contemporary review
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Figure 3.1: Tree-level diagram contributing to the process p ! e
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� in scenario (d)

defined in Table 2.1.

where mf can be either the valence quark mass mq, or the mass of the lepton running
in the loop, i.e., me in this case, depending on the specific scenario, as will be discussed
below. (See also Appendix A for more details.) The loop-induced proton decay can then
be expressed as follows

�(p ! ⇡
0
e
+) '

mp

16⇡

✓
m

2
p

⇤2

◆2

|yud yue|
2
. (3.3)

By combining Eqs. (3.1) and (3.3), and taking the electron mass as a benchmark value
for mf , we find that

�(p ! e
+
e
+
e
�)

�(p ! ⇡0e+)
'

1

⇡2

✓
m

3
p

mf ⇤2

◆2

' 10�7

✓
me

mf

◆2✓1TeV

⇤

◆4

, (3.4)

where the dependence on the leptoquark couplings cancels out to the first approximation.
It is now transparent that proton decays faster through the one-loop level induced

two-body process than through the tree-level three-body one. If we also take into account
that the experimental limit for the partial lifetime of p ! ⇡

0
e
+ [31] is approximately of

the same strength as the one for the three-body decay such as p ! e
+
e
+
e
� [29], we

can conclude with certainty that the loop-induced processes are more sensitive probes
of the triple-leptoquark interactions than the tree-level ones. Our estimate is based on
the scenario where mf = me and it would be even further exacerbated if the chirality is
flipped in the quark lines, leading to mf = mq, or if heavier leptons are running in the
loop.

We finally opt to show how to accurately perform the extraction of a lower limit on
the leptoquark masses that we denote with ⇤ within the framework of scenario (d) that is
defined in Tables 2.1 and 2.2 for both the tree-level p ! e

+
e
+
e
� decay, and the one-loop

level decays p ! ⇡
0
e
+ and p ! ⇡

+
⌫̄. To deduce ⇤ we will eventually set all of the

dimensionless couplings to one and focus exclusively on the leptoquark couplings to the
first generation of fermions in Secs. 3.2 and 3.3.

3.2 Tree-level leptoquark mediation of p ! e�e+e+

Let us first consider decay amplitude for p ! e
+
e
+
e
� and determine the corresponding

decay rate for scenario (d) from Table 2.1, i.e., the S3-S3-R⇤
2-H contraction. The rele-

vant proton decay process is depicted in Fig. 3.1. We, again, focus on the case where

6

an example

Comparison tree and loop level proton decay width
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Contractions Operators Proton decay (tree) Proton decay (one-loop)
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Table 2.2: List of all non-trivial �-�0-�00 and �-�0-�00-H contractions, schematic
representation of the associated d = 9 e↵ective operators, and corresponding proton
decay channels at both the tree- and one-loop levels. The e↵ective operators in scenarios
(a) and (b) conserve B+L, while the ones appearing in the remaining scenarios conserve
B � L, where B and L are baryon and lepton numbers, respectively.
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Figure 3.1: Tree-level diagram contributing to the process p ! e
+
e
+
e
� in scenario (d)

defined in Table 2.1.

where mf can be either the valence quark mass mq, or the mass of the lepton running
in the loop, i.e., me in this case, depending on the specific scenario, as will be discussed
below. (See also Appendix A for more details.) The loop-induced proton decay can then
be expressed as follows
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By combining Eqs. (3.1) and (3.3), and taking the electron mass as a benchmark value
for mf , we find that
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where the dependence on the leptoquark couplings cancels out to the first approximation.
It is now transparent that proton decays faster through the one-loop level induced

two-body process than through the tree-level three-body one. If we also take into account
that the experimental limit for the partial lifetime of p ! ⇡

0
e
+ [31] is approximately of

the same strength as the one for the three-body decay such as p ! e
+
e
+
e
� [29], we

can conclude with certainty that the loop-induced processes are more sensitive probes
of the triple-leptoquark interactions than the tree-level ones. Our estimate is based on
the scenario where mf = me and it would be even further exacerbated if the chirality is
flipped in the quark lines, leading to mf = mq, or if heavier leptons are running in the
loop.

We finally opt to show how to accurately perform the extraction of a lower limit on
the leptoquark masses that we denote with ⇤ within the framework of scenario (d) that is
defined in Tables 2.1 and 2.2 for both the tree-level p ! e

+
e
+
e
� decay, and the one-loop

level decays p ! ⇡
0
e
+ and p ! ⇡

+
⌫̄. To deduce ⇤ we will eventually set all of the

dimensionless couplings to one and focus exclusively on the leptoquark couplings to the
first generation of fermions in Secs. 3.2 and 3.3.

3.2 Tree-level leptoquark mediation of p ! e�e+e+

Let us first consider decay amplitude for p ! e
+
e
+
e
� and determine the corresponding

decay rate for scenario (d) from Table 2.1, i.e., the S3-S3-R⇤
2-H contraction. The rele-

vant proton decay process is depicted in Fig. 3.1. We, again, focus on the case where
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A Explicit loop computation

We provide, in this Appendix, general expressions for the loop diagrams depicted in the
right panel of Fig. 1.1. For simplicity, we work in the broken electroweak phase, and
we consider three leptoquark mass eigenstates �Q, �Q0

and �Q00
, where the superscripts

denote the electric charges of each state, which satisfy Q + Q
0 + Q

00 = 0. These states
can originate from either two or three leptoquark multiplets, as it is demonstrated in
Table 2.1.

We write the triple-leptoquark interaction as follows.

Lscalar � � v "abc �
Q
a �Q0

b �Q00

c + h.c. , (A.1)

where a, b, c are color indices, and the coupling � can be easily identified for each of
the scenarios in Table 2.1. We assume that the leptoquarks �Q and �Q0

carry fermion
numbers F = 0 and F = 2, respectively, and that they have the following Yukawa
interactions

Lyuk. � q (yRPR + yLPL) `�
Q + q0C (y0RPR + y

0
LPL) `�

Q0⇤ + h.c. , (A.2)

in addition to the Yukawa couplings of �Q00
which are not explicitly written out. In

Eq. (A.2), ` is a generic lepton, and q and q
0 stand for two distinct quarks, with electric

charges satisfying Q = Qq � Q` and Q
0 = �Qq0 � Q`. The Yukawa couplings yL and yR

for each scenario can be matched to Table 1.1 after expanding the leptoquark multiplets.
Note, also, that color and flavor indices are not explicitly written in Eq. (A.2).

The loop diagram in Fig. 1.1 corresponds to a loop-induced diquark coupling of the
�Q00

leptoquark
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C
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L
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where y
L
qq0 and y

R
qq0 can be fully expressed in terms of the couplings defined above. To

perform this computation, it is useful to expand the loop amplitude in the external
momenta before integration [33]. We find that
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where degenerate leptoquark masses are assumed, i.e., m�Q = m�Q0 = m�Q00 ⌘ m� . The
terms proportional to m` and mq(0) correspond to a chirality-flip in the internal lepton
and external quark lines, respectively. From these expressions, it is straightforward to
derive the triple-leptoquark interaction contributions for any of the scenarios listed in
Table 2.1 and for any of the loop processes collected in Table 2.2.

B d = 9 e↵ective operators

We collect, in this Appendix, the d = 9 e↵ective Lagrangians that have been used to
generate the entries in Table 2.2. These are
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A Explicit loop computation

We provide, in this Appendix, general expressions for the loop diagrams depicted in the
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we consider three leptoquark mass eigenstates �Q, �Q0
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where degenerate leptoquark masses are assumed, i.e., m�Q = m�Q0 = m�Q00 ⌘ m� . The
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A Explicit loop computation

We provide, in this Appendix, general expressions for the loop diagrams depicted in the
right panel of Fig. 1.1. For simplicity, we work in the broken electroweak phase, and
we consider three leptoquark mass eigenstates �Q, �Q0

and �Q00
, where the superscripts

denote the electric charges of each state, which satisfy Q + Q
0 + Q

00 = 0. These states
can originate from either two or three leptoquark multiplets, as it is demonstrated in
Table 2.1.

We write the triple-leptoquark interaction as follows.
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c + h.c. , (A.1)

where a, b, c are color indices, and the coupling � can be easily identified for each of
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The loop diagram corresponds to a loop-induced diquark coupling of the 
∆Qʹʹ leptoquark 

A Explicit loop computation

We provide, in this Appendix, general expressions for the loop diagrams depicted in the
right panel of Fig. 1.1. For simplicity, we work in the broken electroweak phase, and
we consider three leptoquark mass eigenstates �Q, �Q0

and �Q00
, where the superscripts

denote the electric charges of each state, which satisfy Q + Q
0 + Q

00 = 0. These states
can originate from either two or three leptoquark multiplets, as it is demonstrated in
Table 2.1.
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carry fermion
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Lyuk. � q (yRPR + yLPL) `�
Q + q0C (y0RPR + y

0
LPL) `�

Q0⇤ + h.c. , (A.2)

in addition to the Yukawa couplings of �Q00
which are not explicitly written out. In

Eq. (A.2), ` is a generic lepton, and q and q
0 stand for two distinct quarks, with electric

charges satisfying Q = Qq � Q` and Q
0 = �Qq0 � Q`. The Yukawa couplings yL and yR

for each scenario can be matched to Table 1.1 after expanding the leptoquark multiplets.
Note, also, that color and flavor indices are not explicitly written in Eq. (A.2).

The loop diagram in Fig. 1.1 corresponds to a loop-induced diquark coupling of the
�Q00

leptoquark

Lqq0 = "abc q
C
a

�
y
L
qq0PL + y

L
qq0PR

�
q
0
b �

Q00

c + h.c. , (A.3)

where y
L
qq0 and y

R
qq0 can be fully expressed in terms of the couplings defined above. To

perform this computation, it is useful to expand the loop amplitude in the external
momenta before integration [33]. We find that

y
L
qq0 =

�v

16⇡2m2
�

⇣
m` y

0
Ly

⇤
R �

mq

4
y
0
Ry

⇤
R �

mq0

4
y
0
Ly

⇤
L

⌘
, (A.4)

y
R
qq0 =

�v

16⇡2m2
�

⇣
m` y

0
Ry

⇤
L �

mq

4
y
0
Ly

⇤
L �

mq0

4
y
0
Ry

⇤
R

⌘
, (A.5)

where degenerate leptoquark masses are assumed, i.e., m�Q = m�Q0 = m�Q00 ⌘ m� . The
terms proportional to m` and mq(0) correspond to a chirality-flip in the internal lepton
and external quark lines, respectively. From these expressions, it is straightforward to
derive the triple-leptoquark interaction contributions for any of the scenarios listed in
Table 2.1 and for any of the loop processes collected in Table 2.2.

B d = 9 e↵ective operators

We collect, in this Appendix, the d = 9 e↵ective Lagrangians that have been used to
generate the entries in Table 2.2. These are

L(a) �
2✏abc
m

4
R̃2
m

2
S1

(yL
R̃2
)⇤1j(⌫̄

j
LdRa) (y

L
R̃2
)⇤1k(ē

k
LdRb) (B.1a)
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Chirality flip in the internal lepton and 
external quark lines
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Cudeu
LL =

p
2�

8⇡2

vme

⇤4
(V ⇤yLS3

)


yLS3

(V yRR2
)⇤ +

md

4me
yLS3

(yLR2
)⇤
�
, (1)

Cudeu
LR =

�

32⇡2

vmu

⇤4
(V ⇤yLS3

)2(yLR2
)⇤ . (2)

Ingredients

We, again, omit flavor indices since they are all set to one. The hadronic matrix elements
needed to compute p ! ⇡

0
e
+ can be parameterized in full generality as [30, 32]

D
⇡
0
���O��0

��� p
E
=


W

��0

0 (q2)�
i/q

mp
W

��0

1 (q2)

�
P�0up , (3.15)

where O
��0

=
�
u
C
P�d

�
P�0u, with �,�0 = R,L. The proton spinor is, again, denoted by

up, q stands for the momentum exchanged in this transition, and W
��0
0 (q2) and W

��0
1 (q2)

are two independent hadronic form-factors. For the p ! ⇡
0
e
+ transition, the latter form-

factors can be neglected since their contributions are suppressed by me/mp. The proton
decay width can then be expressed in terms of the W0 form factors as follows,

�(p ! ⇡
0
e
+) =

mp

32⇡

✓
1�

m
2
⇡

m2
p

◆2 h
(WLL

0 )2|Cudeu
LL |

2 + (WRL
0 )2|Cudeu

LR |
2
i
, (3.16)

where the electron mass has been neglected. W
��0
0 ⌘ W

��0
0 (0) have been computed on

the lattice and they are predicted, for this specific transition, to be WLL
0 = 0.134(5)GeV2

and W
LR
0 = �0.131(4)GeV2 [30].

Using the expressions derived above, and assuming that yLS3
= y

R
R2

= y
L
R2

= � = 1, we
obtain that the scale ⇤ for p ! ⇡

0
e
+ should satisfy

p ! ⇡
0
e
+ : ⇤ � 1.8⇥ 104 TeV . (3.17)

This limit is about two orders of magnitude more stringent than the limit derived from
the tree-level proton decay p ! e

+
e
+
e
� presented in Eq. (3.11). This is in agreement

with our initial estimate from Sec. 3.1.

p ! ⇡+⌫̄ : Another interesting proton decay mode is p ! ⇡
+
⌫̄, where the experimental

limit on this partial decay lifetime is currently at ⌧(p ! ⇡
+
⌫̄)exp > 3.9⇥ 1032 years [34].

This process can be induced by the right diagram in Fig. 3.2, which contributes to the
e↵ective Lagrangian

L
(d=6)
e↵ � C

ud⌫d
LL

�
u
C
PLd

� �
⌫
C
PLd

�
+ C

ud⌫d
RL

�
u
C
PRd

� �
⌫
C
PLd

�
+ h.c. , (3.18)

with the Wilson coe�cients

C
ud⌫d
LL = �

p
2�

8⇡2

vme

⇤4
(yLS3

)2

(V y

R
R2
)⇤ +

md

4me
(yLR2

)⇤
�
, (3.19)

C
ud⌫d
RL = �

�

32⇡2

vmu

⇤4
(V ⇤

y
L
S3
)2(yLR2

)⇤ . (3.20)

We, once again, assume degenerate leptoquark masses mR2 = mS3 ⌘ ⇤ and omit all flavor
indices. By combining the isospin relation

h⇡
+
|
�
u
C
P�d

�
P�0d|pi =

p
2h⇡0

|
�
u
C
P�d

�
P�0u|pi , (3.21)

with Eq. (3.15), we find that

�(p ! ⇡
+
⌫) =

mp

16⇡

✓
1�

m
2
⇡

m2
p

◆2 h
(WLL

0 )2|Cud⌫d
LL |

2 + (WRL
0 )2|Cud⌫d

RL |
2
i
. (3.22)
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p
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�
uCP�d

�
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Form factors
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�,�0 = R,L.

We, again, omit flavor indices since they are all set to one. The hadronic matrix elements
needed to compute p ! ⇡

0
e
+ can be parameterized in full generality as [30, 32]

D
⇡
0
���O��0

��� p
E
=


W

��0

0 (q2)�
i/q

mp
W

��0

1 (q2)

�
P�0up , (3.15)

where O
��0

=
�
u
C
P�d

�
P�0u, with �,�0 = R,L. The proton spinor is, again, denoted by

up, q stands for the momentum exchanged in this transition, and W
��0
0 (q2) and W

��0
1 (q2)

are two independent hadronic form-factors. For the p ! ⇡
0
e
+ transition, the latter form-

factors can be neglected since their contributions are suppressed by me/mp. The proton
decay width can then be expressed in terms of the W0 form factors as follows,

�(p ! ⇡
0
e
+) =

mp

32⇡

✓
1�

m
2
⇡

m2
p

◆2 h
(WLL

0 )2|Cudeu
LL |

2 + (WRL
0 )2|Cudeu

LR |
2
i
, (3.16)

where the electron mass has been neglected. W
��0
0 ⌘ W

��0
0 (0) have been computed on

the lattice and they are predicted, for this specific transition, to be WLL
0 = 0.134(5)GeV2

and W
LR
0 = �0.131(4)GeV2 [30].

Using the expressions derived above, and assuming that yLS3
= y

R
R2

= y
L
R2

= � = 1, we
obtain that the scale ⇤ for p ! ⇡

0
e
+ should satisfy

p ! ⇡
0
e
+ : ⇤ � 1.8⇥ 104 TeV . (3.17)

This limit is about two orders of magnitude more stringent than the limit derived from
the tree-level proton decay p ! e

+
e
+
e
� presented in Eq. (3.11). This is in agreement

with our initial estimate from Sec. 3.1.

p ! ⇡+⌫̄ : Another interesting proton decay mode is p ! ⇡
+
⌫̄, where the experimental

limit on this partial decay lifetime is currently at ⌧(p ! ⇡
+
⌫̄)exp > 3.9⇥ 1032 years [34].

This process can be induced by the right diagram in Fig. 3.2, which contributes to the
e↵ective Lagrangian

L
(d=6)
e↵ � C

ud⌫d
LL

�
u
C
PLd

� �
⌫
C
PLd

�
+ C

ud⌫d
RL

�
u
C
PRd

� �
⌫
C
PLd

�
+ h.c. , (3.18)

with the Wilson coe�cients

C
ud⌫d
LL = �

p
2�

8⇡2

vme

⇤4
(yLS3

)2

(V y

R
R2
)⇤ +

md

4me
(yLR2

)⇤
�
, (3.19)

C
ud⌫d
RL = �

�

32⇡2

vmu

⇤4
(V ⇤

y
L
S3
)2(yLR2

)⇤ . (3.20)

We, once again, assume degenerate leptoquark masses mR2 = mS3 ⌘ ⇤ and omit all flavor
indices. By combining the isospin relation

h⇡
+
|
�
u
C
P�d

�
P�0d|pi =

p
2h⇡0

|
�
u
C
P�d

�
P�0u|pi , (3.21)

with Eq. (3.15), we find that

�(p ! ⇡
+
⌫) =

mp

16⇡
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2
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2 + (WRL
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2
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. (3.22)
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We, again, omit flavor indices since they are all set to one. The hadronic matrix elements
needed to compute p ! ⇡

0
e
+ can be parameterized in full generality as [30, 32]

D
⇡
0
���O��0

��� p
E
=


W

��0

0 (q2)�
i/q

mp
W

��0

1 (q2)

�
P�0up , (3.15)

where O
��0

=
�
u
C
P�d

�
P�0u, with �,�0 = R,L. The proton spinor is, again, denoted by

up, q stands for the momentum exchanged in this transition, and W
��0
0 (q2) and W

��0
1 (q2)

are two independent hadronic form-factors. For the p ! ⇡
0
e
+ transition, the latter form-

factors can be neglected since their contributions are suppressed by me/mp. The proton
decay width can then be expressed in terms of the W0 form factors as follows,

�(p ! ⇡
0
e
+) =

mp

32⇡

✓
1�
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2
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m2
p

◆2 h
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0 )2|Cudeu
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2 + (WRL
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LR |
2
i
, (3.16)

where the electron mass has been neglected. W
��0
0 ⌘ W

��0
0 (0) have been computed on

the lattice and they are predicted, for this specific transition, to be WLL
0 = 0.134(5)GeV2

and W
LR
0 = �0.131(4)GeV2 [30].

Using the expressions derived above, and assuming that yLS3
= y

R
R2

= y
L
R2

= � = 1, we
obtain that the scale ⇤ for p ! ⇡

0
e
+ should satisfy

p ! ⇡
0
e
+ : ⇤ � 1.8⇥ 104 TeV . (3.17)

This limit is about two orders of magnitude more stringent than the limit derived from
the tree-level proton decay p ! e

+
e
+
e
� presented in Eq. (3.11). This is in agreement

with our initial estimate from Sec. 3.1.

p ! ⇡+⌫̄ : Another interesting proton decay mode is p ! ⇡
+
⌫̄, where the experimental

limit on this partial decay lifetime is currently at ⌧(p ! ⇡
+
⌫̄)exp > 3.9⇥ 1032 years [34].

This process can be induced by the right diagram in Fig. 3.2, which contributes to the
e↵ective Lagrangian

L
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�
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with the Wilson coe�cients
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y
L
S3
)2(yLR2

)⇤ . (3.20)

We, once again, assume degenerate leptoquark masses mR2 = mS3 ⌘ ⇤ and omit all flavor
indices. By combining the isospin relation
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+
|
�
u
C
P�d

�
P�0d|pi =

p
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|
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with Eq. (3.15), we find that
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We, again, omit flavor indices since they are all set to one. The hadronic matrix elements
needed to compute p ! ⇡

0
e
+ can be parameterized in full generality as [30, 32]

D
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0
���O��0

��� p
E
=


W

��0

0 (q2)�
i/q

mp
W

��0

1 (q2)

�
P�0up , (3.15)

where O
��0

=
�
u
C
P�d

�
P�0u, with �,�0 = R,L. The proton spinor is, again, denoted by

up, q stands for the momentum exchanged in this transition, and W
��0
0 (q2) and W

��0
1 (q2)

are two independent hadronic form-factors. For the p ! ⇡
0
e
+ transition, the latter form-

factors can be neglected since their contributions are suppressed by me/mp. The proton
decay width can then be expressed in terms of the W0 form factors as follows,

�(p ! ⇡
0
e
+) =

mp
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◆2 h
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2
i
, (3.16)

where the electron mass has been neglected. W
��0
0 ⌘ W

��0
0 (0) have been computed on

the lattice and they are predicted, for this specific transition, to be WLL
0 = 0.134(5)GeV2

and W
LR
0 = �0.131(4)GeV2 [30].

Using the expressions derived above, and assuming that yLS3
= y

R
R2

= y
L
R2

= � = 1, we
obtain that the scale ⇤ for p ! ⇡

0
e
+ should satisfy

p ! ⇡
0
e
+ : ⇤ � 1.8⇥ 104 TeV . (3.17)

This limit is about two orders of magnitude more stringent than the limit derived from
the tree-level proton decay p ! e

+
e
+
e
� presented in Eq. (3.11). This is in agreement

with our initial estimate from Sec. 3.1.

p ! ⇡+⌫̄ : Another interesting proton decay mode is p ! ⇡
+
⌫̄, where the experimental

limit on this partial decay lifetime is currently at ⌧(p ! ⇡
+
⌫̄)exp > 3.9⇥ 1032 years [34].

This process can be induced by the right diagram in Fig. 3.2, which contributes to the
e↵ective Lagrangian
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with the Wilson coe�cients
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)⇤ . (3.20)

We, once again, assume degenerate leptoquark masses mR2 = mS3 ⌘ ⇤ and omit all flavor
indices. By combining the isospin relation
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P�d

�
P�0d|pi =

p
2h⇡0

|
�
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C
P�d
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P�0u|pi , (3.21)

with Eq. (3.15), we find that

�(p ! ⇡
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mp
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p ! ⇡+⌫̄

We, again, omit flavor indices since they are all set to one. The hadronic matrix elements
needed to compute p ! ⇡

0
e
+ can be parameterized in full generality as [30, 32]

D
⇡
0
���O��0

��� p
E
=


W

��0

0 (q2)�
i/q

mp
W

��0

1 (q2)

�
P�0up , (3.15)

where O
��0

=
�
u
C
P�d

�
P�0u, with �,�0 = R,L. The proton spinor is, again, denoted by

up, q stands for the momentum exchanged in this transition, and W
��0
0 (q2) and W

��0
1 (q2)

are two independent hadronic form-factors. For the p ! ⇡
0
e
+ transition, the latter form-

factors can be neglected since their contributions are suppressed by me/mp. The proton
decay width can then be expressed in terms of the W0 form factors as follows,

�(p ! ⇡
0
e
+) =

mp

32⇡

✓
1�

m
2
⇡

m2
p

◆2 h
(WLL

0 )2|Cudeu
LL |

2 + (WRL
0 )2|Cudeu

LR |
2
i
, (3.16)

where the electron mass has been neglected. W
��0
0 ⌘ W

��0
0 (0) have been computed on

the lattice and they are predicted, for this specific transition, to be WLL
0 = 0.134(5)GeV2

and W
LR
0 = �0.131(4)GeV2 [30].

Using the expressions derived above, and assuming that yLS3
= y

R
R2

= y
L
R2

= � = 1, we
obtain that the scale ⇤ for p ! ⇡

0
e
+ should satisfy

p ! ⇡
0
e
+ : ⇤ � 1.8⇥ 104 TeV . (3.17)

This limit is about two orders of magnitude more stringent than the limit derived from
the tree-level proton decay p ! e

+
e
+
e
� presented in Eq. (3.11). This is in agreement

with our initial estimate from Sec. 3.1.

p ! ⇡+⌫̄ : Another interesting proton decay mode is p ! ⇡
+
⌫̄, where the experimental

limit on this partial decay lifetime is currently at ⌧(p ! ⇡
+
⌫̄)exp > 3.9⇥ 1032 years [34].

This process can be induced by the right diagram in Fig. 3.2, which contributes to the
e↵ective Lagrangian

L
(d=6)
e↵ � C

ud⌫d
LL

�
u
C
PLd

� �
⌫
C
PLd

�
+ C

ud⌫d
RL

�
u
C
PRd

� �
⌫
C
PLd

�
+ h.c. , (3.18)

with the Wilson coe�cients

C
ud⌫d
LL = �

p
2�

8⇡2

vme

⇤4
(yLS3

)2

(V y

R
R2
)⇤ +

md

4me
(yLR2

)⇤
�
, (3.19)

C
ud⌫d
RL = �

�

32⇡2

vmu

⇤4
(V ⇤

y
L
S3
)2(yLR2

)⇤ . (3.20)

We, once again, assume degenerate leptoquark masses mR2 = mS3 ⌘ ⇤ and omit all flavor
indices. By combining the isospin relation

h⇡
+
|
�
u
C
P�d

�
P�0d|pi =

p
2h⇡0

|
�
u
C
P�d

�
P�0u|pi , (3.21)

with Eq. (3.15), we find that

�(p ! ⇡
+
⌫) =

mp

16⇡

✓
1�

m
2
⇡

m2
p

◆2 h
(WLL

0 )2|Cud⌫d
LL |

2 + (WRL
0 )2|Cud⌫d

RL |
2
i
. (3.22)
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p ! ⇡+⌫̄ : ⇤ � 1.2⇥ 104 TeV

p

u

d

R
5/3
2

S
−1/3
3

S
−4/3
3

u

π+

e

ν̄

d̄

<latexit sha1_base64="LIpqua5Wrsy8r8gCo3rFeNgEFHo="></latexit>

yLS3
= yLR2

= yRR2
= � = 1assuming                                                           and  

<latexit sha1_base64="8VVjBvdSB/sIc44Vd/41bXDY/OA="></latexit>

mS3 = mR2 = ⇤



Conclusions 

• we study a phenomenological impact of triple-leptoquark interactions on proton stability; 

• there are two different decay topologies under the assumption that scalar leptoquarks of interest 
couple solely to the quark-lepton pairs; 

• the tree - level topology has been analysed in the literature before in the context of baryon number violation 
while the one-loop level one has not been featured in any scientific study to date; 

• we demonstrate that it is the one-loop level topology that is producing more stringent bounds on the scalar 
leptoquark masses of the two, if and when they coexist;

<latexit sha1_base64="D2S99KYJjvgVr0ZrihFR93vV4+U="></latexit>

p ! e+e+e� : ⇤ � 1.6⇥ 102 TeV
<latexit sha1_base64="ImhleIYlMSOO/m9fgh+Aht/l2bU="></latexit>

p ! ⇡0e+ : ⇤ � 1.8⇥ 104 TeV

• we also specify the most prominent proton decay signatures due to the presence of all non-trivial cubic 
and quartic contractions involving three scalar leptoquark multiplets, where in the latter case one of the 
scalar multiplets is the SM Higgs doublet 
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We discuss proton and neutron decays involving three leptons in the final state. Some of these
modes could constitute the dominant decay channel because they conserve lepton-flavor symmetries
that are broken in all usually considered channels. This includes the particularly interesting and
rarely discussed p ! e+e+µ� and p ! µ+µ+e� modes. As the relevant e↵ective operators arise at
dimension 9 or 10, observation of a three-lepton mode would probe energy scales of order 100TeV.
This allows to connect proton decay to other probes such as rare meson decays or collider physics.
UV completions of this scenario involving leptoquarks unavoidably violate lepton flavor universality
and could provide an explanation to the recent b ! sµµ anomalies observed in B meson decays.

INTRODUCTION

The search for proton decay (PD) is one of the most im-
portant experimental endeavors in particle physics. The
proton is expected to be unstable because baryon number
is only an accidental symmetry in the Standard Model
(SM), violated in many SM extensions [1]. From the low-
energy SM perspective, PD can be induced already at the
level of dimension d = 6 operators such as uud`/⇤2 [2, 3].
This leads to two-body decays like p ! `

+
⇡
0 with rate

� / m
5
p/⇤

4. As of today, the experimental sensitivity
to such decays is of order 1034 years [4], so PD searches
are currently probing an e↵ective UV scale ⇤ of order
1015 GeV, i.e. nothing but the GUT scale.

More generally PD could also test physics at a lower
scale if the transition proceeds through an operator of
dimension higher than 6. Without fine-tuning, this re-
quires a symmetry that eliminates the lower-dimensional
operators. On the basis of baryon number B and lepton
number L symmetries, the corresponding list of dominant
operators has been determined by Weinberg [5]. Dom-
inant here means the lowest-dimensional operators that
conserve a given symmetry of the formB+aL with a 2 Q.

In this letter we show that by adopting lepton flavor
symmetries instead of only B and L, the list of opera-
tors which emerges is totally di↵erent, leading to di↵erent
dominant decay modes. Many of these channels have not
been discussed in the literature before and/or not been
searched for experimentally, but could be probed very
e�ciently, e.g. by Super-Kamiokande (SK). Due to the
higher operator dimension, these channels are sensitive
to scales down to 100TeV, which could have interesting
associated signatures in other observables.

By lepton flavor symmetries we mean combinations of
the three individual lepton flavor numbers Le,µ,⌧ . These
are conserved quantum numbers in the SM and have been
observed to be broken only very weakly in the neutral
lepton sector through neutrino oscillations. As a result,
flavor is still an excellent approximate symmetry in the
charged lepton sector, up to unobservable neutrino-mass
suppressed e↵ects [6]. PD operators up to dimension 8
involve only a single lepton, say of flavor ↵, and thus

simply violate �B = ±�L↵ and conserve B ⌥ L, L� ,
and L� , with ↵, �, � all di↵erent flavors.1 PD operators
of dimension 9 and higher, on the other hand, can involve
three leptons and thus have a richer flavor structure. As
a result they can conserve symmetries that are broken
by lower-dimensional operators, leading to a dominance
of the corresponding modes involving three leptons in
the final states. For instance the p ! e

+
e
+
µ
� mode

we will discuss at length below conserves B � L, L⌧ ,
and Le + 2Lµ. This decay can clearly not be brought
back to other B�L-conserving modes such as p ! `

+
⇡
0

by closing SM loops, as this would require lepton-flavor-
violating couplings.
In the following we will determine the three-lepton di-

mension 9 and 10 operators arising in this way from a
lepton flavor symmetry and identify the corresponding
dominant nucleon decay channels. We will also present
an example of a UV-complete leptoquark (LQ) model
leading to the titular decays, which can furthermore ac-
commodate neutrino masses and leptogenesis and also
addresses the recent anomalies in b ! sµµ transitions.

DIMENSION 9 OPERATORS

The lowest operators with three quarks and three lep-
tons have d = 9. Those with �B = �L/3 do not lead to
nucleon decay since they contain charm or top quarks [5];
this leaves operators with �B = ��L, which, using
Fierz-like identities, can be written in terms of scalar
bilinears only. We find

O
9
1 = (QQ)1(L̄L̄)1(`d) , O

9
2 = (QQ)1(L̄`)(L̄d) ,

O
9
3 = (QL)1(L̄d)(L̄d) , O

9
4 = (¯̀Q)(L̄d)(`d) ,

O
9
5 = (L̄L̄)(ud)(`d) , O

9
6 = (L̄u)(L̄d)(`d) ,

O
9
7 = (L̄d)(L̄`)(ud) , O

9
8 = (L̄d)(L̄d)(`u) ,

O
9
9 = (QL)3((L̄d)(L̄d))3 , O

9
10 = (QL)1(L̄L̄)1(dd) ,

1 Note that other kinds of horizontal symmetries were already
qualitatively discussed in Refs. [7, 8] for dimension 6 operators.
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channel limit/1030 yrs operators

n ! `+↵ `
�
� ⌫� 79–257 [9] O

9
1–O

9
9

N ! K`+↵ `
�
� ⌫� – O

9
8–O

9
14

n ! K+`+↵ `
�
� `

�
� – O

9
15–O

9
16

TABLE I: Nucleon decay channels via the d = 9 operators of
Eq. (1). Here, N = (p n)T and K = (K+ K0)T .

O
9
11 = (QL)3(L̄L̄)3(dd) , O

9
12 = (¯̀Q)(L̄`)(dd) ,

O
9
13 = (L̄L̄)(u`)(dd) , O

9
14 = (L̄u)(L̄`)(dd) ,

O
9
15 = (¯̀L)(L̄d)(dd) , O

9
16 = (¯̀̀̄ )(`d)(dd) . (1)

Here, Q (L) denotes the left-handed quark (lepton) dou-
blet and u, d, and ` the right-handed quarks and lepton
fields. We omitted all generation indices and ✏ijk color
contractions, but indicated in subscripts the size of the
non-trivial SU(2)L multiplet the fermion bilinear forms.
These operators give rise to the dominant nucleon decays
of Tab. I; there are no three-body PD modes, but O

9
1–

O
9
9 give n ! `

+
↵ `

�
� ⌫� , on which there are limits from

IMB [9]. The other operators require an s quark to
survive the color anti-symmetrization, which then yield
four-body decay modes involving kaons to be dominant,
including the fully-visible n ! K

+
`
+
↵ `

�
� `

�
� and partly

visible N ! K`
+
↵ `

�
� ⌫� channels.

In order for these operators/channels to dominate over
the d = 7, �B = ��L channels [5], they need to carry
lepton flavor numbers that the lower ones cannot have.
We find the corresponding list of dominant decays to be

n ! e
+
µ
�
⌫µ,⌧ , n ! µ

+
e
�
⌫e,⌧ ,

N ! Ke
+
µ
�
⌫µ,⌧ , N ! Kµ

+
e
�
⌫e,⌧ , (2)

n ! K
+
e
+
µ
�
µ
�
, n ! K

+
µ
+
e
�
e
�
.

One can readily identify the conserved symmetries for
each decay. Note that water Cherenkov detectors such
as SK basically cannot determine the electric charge of
the lepton, nor observe the outgoing neutrino, making it
impossible to distinguish some of these channels.
Several modes of Tab. I were already discussed to some

degree in the literature because they arise in SU(4)C
unification models [10] and in the R-parity violating
MSSM [11–13]. A recent discussion of the latter case can
be found in Ref. [14], where it is claimed that the kaon
modes typically dominate. The corresponding lifetimes
for massless leptons are [14]

�(n ! `
+
↵ `

�
� ⌫�) ⇠

�
2
hm

5
n

6144⇡3⇤10
'

(320TeV/⇤)10

3⇥ 1032 yrs
, (3)

�(N ! K`
+
↵ `

�
� ⌫�) ⇠

(100TeV/⇤)10

3⇥ 1032 yrs
, (4)

with the hadronic matrix element �h ' 0.014GeV3 [15]
and ignoring order-one prefactors that depend on the ac-
tual operator O9

j/⇤
5 and lepton masses. Direct searches

channel (�Le,�Lµ) limit/years

p ! e+e+e� (1, 0) 793⇥ 1030

p ! e+µ+µ� (1, 0) 359⇥ 1030

p ! µ+e+e� (0, 1) 529⇥ 1030

p ! µ+µ+µ� (0, 1) 675⇥ 1030

p ! µ+µ+e� (�1, 2) 359⇥ 1030

p ! e+e+µ� (2,�1) 529⇥ 1030

TABLE II: 90% C.L. limits on PD branching ratios into three
charged leptons [9]. The middle column shows the lepton
flavor quantum numbers violated in the decay.

for these decays are either non-existent or rather old,
thus we strongly encourage SK to search for the modes
of Tab. I, in particular the flavor channels of Eq. (2).

DIMENSION 10 OPERATORS

There are two classes of d = 10 operators with three
leptons: 1) �B = �L, which can give rise to the six PD
channels p ! `

+
↵ `

+
� `

�
� (Tab. II); 2) �B = ��L/3 which

lead to four-body decays such as n ! ⌫⌫`⇡
+ [5]. The for-

mer class is particularly spectacular because it involves
only three particles in the final state, all of which are
charged leptons. The sensitivity of neutrino detectors to
such a final state is expected to be as good or even better
than for the usual two-body decays. This was in particu-
lar the case 20 years ago [9], the last time these channels
were searched for. Therefore we strongly encourage ex-
periments such as SK to perform dedicated searches for
these channels.

We want to especially emphasize this for the 2 chan-
nels where both anti-leptons have the same flavor, p !

e
+
e
+
µ
� and p ! µ

+
µ
+
e
�, because they can be singled

out by a symmetry, Le+2Lµ+xL⌧ and 2Le+Lµ+xL⌧ ,
respectively (with arbitrary value of x). Some d = 9 op-
erators/decays (Eq. (2)) also conserve one of these flavor
symmetries, but they break B � L and conserve B + L,
opposite to the d = 10 operators. Thus, depending on the
particle content and/or symmetries of the UV physics at
the origin of these operators, it is perfectly possible that
only the d = 10 operators would be generated, see the
explicit example of UV model below. Note that the 4 PD
channels which involve 2 di↵erent anti-leptons (Tab. II)
cannot be singled out from the two-body decays where
the (flavor singlet) e

+
e
� or µ

+
µ
� pair is replaced by a

(flavor singlet) ⇡0.
Considering d = 10 operators without a covariant

derivative, the operators relevant for the channels of
Tab. II involve a SM scalar doublet field H. We find:

O
10
1,2 = (QQ)1,1 (QL)1,3 (L̄`H̄)1,3 ,

O
10
3,4 = (QQ)1,1 (QL)1,3 (¯̀LH)1,3 ,

O
10
5 = (QQ)1 (LL)3 (¯̀QH)3 ,

3

O
10
6 = (QQ)1 (``)1 (¯̀QH̄)1 ,

O
10
7 = (QQ)1 (LL)3 (L̄uH)3 ,

O
10
8 = (QQ)1 (``)1 (L̄uH̄)1 ,

O
10
9 = (QQ)1 (u`)1 (L̄`H̄)1 ,

O
10
10 = (QQ)1 (u`)1 (¯̀LH)1 ,

O
10
11,12 = (QL)1,3 (QL)3,3 (¯̀QH)3,3 ,

O
10
13,14 = (QL)1,3 (QL)3,3 (L̄uH)3,3 ,

O
10
15,16 = (QL)1,3 (u`)1,1 (¯̀QH)1,3 ,

O
10
17,18 = (QL)1,3 (d`)1,1 (¯̀QH̄)1,3 , (5)

O
10
19 = (QL)3 (u`)1 (L̄uH)3 ,

O
10
20,21 = (QL)1,3 (d`)1,1 (L̄uH̄)1,3 ,

O
10
22,23 = (QL)1,3 (u`)1,1 (L̄dH̄)1,3 ,

O
10
24,25 = (QL)1,3 (ud)1,1 (L̄`H̄)1,3 ,

O
10
26,27 = (QL)1,3 (ud)1,1 (¯̀LH)1,3 ,

O
10
28 = (LL)3 (ud)1 (¯̀QH)3 ,

O
10
29 = (ud)1 (``)1 (¯̀QH̄)1 ,

O
10
30 = (u`)1 (d`)1 (¯̀QH̄)1 ,

O
10
31 = (LL)3 (ud)1 (L̄uH)3 ,

O
10
32 = (ud)1 (u`)1 (L̄`H̄)1 ,

O
10
33 = (ud)1 (``)1 (L̄uH̄)1 ,

O
10
34 = (u`)1 (d`)1 (L̄uH̄)1 ,

O
10
35 = (ud)1 (u`)1 (¯̀LH)1 ,

O
10
36,37 = (QL)1,3 (QL)1,3 (¯̀QH)1,1 ,

O
10
38,39,40 = (QL)1,1,3 (QL)1,3,3 (L̄dH̄)1,3,1 ,

O
10
41 = (u`)1 (u`)1 (l̄QH)1 ,

O
10
42 = (u`)1 (u`)1 (L̄dH̄)1 ,

where the last 7 operators are only relevant for the chan-
nels p ! e

+
µ
+
e
� and p ! e

+
µ
+
µ
�.

With the above operators O10
j /⇤6 we can calculate the

induced PD rate, which for massless leptons is simply [14]

�(p ! `
+
↵ `

+
� `

�
� ) ⇠

hHi
2
�
2
hm

5
p

6144⇡3⇤12
'

(100TeV/⇤)12

1033 yrs
. (6)

Judging by the limits on other three-body PDs [16, 17],
a lifetime of this order is in reach of SK, thus prob-
ing scales ⇠ 100TeV. The mediator masses in a UV-
complete model can be even lower than this scale, since
⇤ is also suppressed by couplings. SU(2)-related PDs
into less-visible modes such as p ! `

+
⌫`0⌫`00 have been

discussed in Ref. [18] but are of no interest here.
To reiterate, the PD channel p ! e

+
e
+
µ
� (µ+

µ
+
e
�)

could be dominant over all commonly discussed modes,
as it is described by the lowest-dimensional operator that
conserves B � L, L⌧ , and Le + 2Lµ (Lµ + 2Le). An
analogous symmetry argument can be used to forbid PD
operators up to d = 12, only allowing, for example, for

B)

S1 F S2

A)

S1

S2
S3

FIG. 1: Topologies relevant for nucleon decay into three
leptons. The external lines are labeled by three quarks and
three leptons, which fixes the SU(3)⇥U(1)EM charges of the
internal scalars Sj and fermion F .

the PD operator uudeeeµ̄µ̄/⇤8. This leads to a PD scale
as low as ⇤ ⇠ 10TeV.

UV COMPLETION

Nucleon decay into three leptons via the d = 9, 10 op-
erators discussed above can at tree-level proceed through
the exchange of heavy particles along 2 di↵erent types of
topologies, see Fig. 1. Topology A involves new heavy
scalars, whereas B also involves a new heavy fermion.
Emission of a kaon involves an extra spectator quark that
does not change the discussion. (We omit an analogous
discussion involving spin-1 mediators.) For the d = 10
operators there are various places in the diagram where
the SM doublet H can be inserted: on an external leg, on
an internal propagator or on the trilinear scalar coupling
in the diagram with topology A, making it a quartic cou-
pling. We will not list explicitly all these possibilities,
but instead give the possible quantum numbers of the
heavy particles for all these possibilities.

First, the scalars along both topologies always couple
to 2 SM fermions, and thus must have the corresponding
quantum numbers. One finds that they are either SU(2)L
singlet di-quarks (coupling to Q̄

c
Q, ūc

d, d̄cd), di-leptons
(coupling to ¯̀c`, ¯̀L, L̄c

L) or LQs [19, 20] (coupling to ¯̀dc,
¯̀uc, L̄Qc, ūL, Q̄`, d̄L), see also [21]. For the processes
above involving a kaon, one of the Q or d quark field is
intended to be of second generation. The present LHC
lower bounds on the masses of these particles typically
lie within 1–1.5TeV for LQs and around 6–7TeV for di-
quarks [22].

As for the heavy fermion appearing in the diagram with
topology B, it can be an SU(3)C singlet with electric
charge 0 or 1 or a triplet with electric charge possibly
equal to any multiple of 1/3 between�7/3 and 7/3 except
for 0, ±1, and ±2. Under SU(2)L all these particles
can be singlet, doublet or triplet, depending in particular
for the d = 10 operators on where the Higgs doublet
insertion is in the diagram. For more specific predictions
we now turn to a UV complete example.

dimension-nine operators
Hambye & Heeck 1712.04871



A Explicit loop computation

We provide, in this Appendix, general expressions for the loop diagrams depicted in the
right panel of Fig. 1.1. For simplicity, we work in the broken electroweak phase, and
we consider three leptoquark mass eigenstates �Q, �Q0

and �Q00
, where the superscripts

denote the electric charges of each state, which satisfy Q + Q
0 + Q

00 = 0. These states
can originate from either two or three leptoquark multiplets, as it is demonstrated in
Table 2.1.

We write the triple-leptoquark interaction as follows.

Lscalar � � v "abc �
Q
a �Q0

b �Q00

c + h.c. , (A.1)

where a, b, c are color indices, and the coupling � can be easily identified for each of
the scenarios in Table 2.1. We assume that the leptoquarks �Q and �Q0

carry fermion
numbers F = 0 and F = 2, respectively, and that they have the following Yukawa
interactions

Lyuk. � q (yRPR + yLPL) `�
Q + q0C (y0RPR + y

0
LPL) `�

Q0⇤ + h.c. , (A.2)

in addition to the Yukawa couplings of �Q00
which are not explicitly written out. In

Eq. (A.2), ` is a generic lepton, and q and q
0 stand for two distinct quarks, with electric

charges satisfying Q = Qq � Q` and Q
0 = �Qq0 � Q`. The Yukawa couplings yL and yR

for each scenario can be matched to Table 1.1 after expanding the leptoquark multiplets.
Note, also, that color and flavor indices are not explicitly written in Eq. (A.2).

The loop diagram in Fig. 1.1 corresponds to a loop-induced diquark coupling of the
�Q00

leptoquark

Lqq0 = "abc q
C
a

�
y
L
qq0PL + y

L
qq0PR

�
q
0
b �

Q00

c + h.c. , (A.3)

where y
L
qq0 and y

R
qq0 can be fully expressed in terms of the couplings defined above. To

perform this computation, it is useful to expand the loop amplitude in the external
momenta before integration [33]. We find that
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where degenerate leptoquark masses are assumed, i.e., m�Q = m�Q0 = m�Q00 ⌘ m� . The
terms proportional to m` and mq(0) correspond to a chirality-flip in the internal lepton
and external quark lines, respectively. From these expressions, it is straightforward to
derive the triple-leptoquark interaction contributions for any of the scenarios listed in
Table 2.1 and for any of the loop processes collected in Table 2.2.

B d = 9 e↵ective operators

We collect, in this Appendix, the d = 9 e↵ective Lagrangians that have been used to
generate the entries in Table 2.2. These are
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j
RdLa)

i
(yL

R̃2
)⇤1k(ē
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i
RdL c)

i

+
h
(yLS3

)1k(d̄
C
Lb⌫

k
L) + (V ⇤

y
L
S3
)1k(ū
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j
LuRa)� (V y

R
R2
)⇤1j(ē
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i
LdRc) (B.1h)

� (yL
R̃2
)⇤1i(⌫̄

i
LdRc) (V

⇤
y
L
S3
)1j(ū
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k
LdRb)

�
(yR

S̃1
)1i(d̄

C
Lce

i
R) + h.c. ,

L(c) �
�✏abcv

p
2m2

S3
m

2
R2
m

2
S1

h
(V ⇤

y
L
S1
)1i(ū
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C
Lbe

k
L)
ih
(yLR2

)⇤1i(ē
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C
Rce

i
R)
i
+ h.c. ,

L(b) �
✏abc

m
2
S̃1
m

2
R2
m

2
R̃2

⇢h
(V y

R
R2
)⇤1j(ē
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C
Rce

i
R)
i

(B.1g)

⇥

⇢h
(yLS3

)1j(d̄
C
La⌫

j
L) + (V ⇤

y
L
S3
)1j(ū
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k
LuRb)

i�
+ h.c. ,

L(d) �
2
p
2�✏abcv

m
4
S3
m

2
R2

(yLS3
)1j(d̄

C
Lae

j
L) (B.1d)

⇥

⇢
(V ⇤

y
L
S3
)1k(ū
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C
La⌫

j
L)
h
(yS3)

L
1k(d̄

C
Lb⌫

k
L) + (V ⇤

y
L
S3
)1k(ū
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in its initial configuration [27]. This will allow HK to
probe nucleon lifetimes up to 1035 yr. Since a large
fiducial volume benefits all the decay modes, improved
limits across the board are expected. On the scintilla-
tor front, the liquid scintillator experiment JUNO will
have 20 kton fiducial volume [25] and will start taking
data in a few years. The DUNE [26] experiment with
⇠ 40 kton fiducial volume based on liquid-argon time-
projection-chamber (LArTPC) technology will allow one
to track both light deposits as well as charge. Despite
their smaller size compared to HK, the JUNO and DUNE
detectors are particularly promising for decay modes in-
volving kaons, such as p ! ⌫K+, which are fully visible
and can be reconstructed with high e�ciency. Addition-
ally, for the multi-body decay channels discussed in this
article the e�ciency in WC experiments could be de-
creased, as it becomes di�cult to reconstruct multiple
overlapping Cherenkov rings, making alternative tech-
nologies as those in JUNO and DUNE crucial. For ex-
ample, in �B = 2 n–n oscillations the resulting n is
subsequently captured on n or p and produces a slew of
decaying pions [67, 68]. In DUNE, the multi-track nature
of such decays could be utilized with high e�ciency [69].

We briefly note that planned next-generation dark-
matter direct-detection experiments such as Argo [70]
(based on liquid Argon) or Darwin [71] (Xenon) could
be able to achieve ultra-low sub-keV energy thresholds
combined with a O(10–100) ton fiducial mass and could
in principle also be utilized for nucleon decay searches.
However, their fiducial volume is still multiple orders of
magnitude smaller than dedicated large-scale neutrino
experiments and would have a hard time competing with
their exclusive searches, although their low threshold
could be beneficial for model-independent searches.

Despite significant experimental e↵orts proton decay
or any other �B 6= 0 process has not been observed
thus far. Almost all kinematically allowed two-body nu-
cleon decay channels have been searched for in various
experiments, although several of the limits are outdated.
We collect the strongest limits in Tab. I and also spec-
ify the violation in (B � L) symmetry that such decays
induce. We note that a neutrino or an antineutrino of
any flavor in the final state will escape the detector be-
fore interacting and is hence invisible, which can result
in a variation of |�(B � L)| by 2 units. We do not in-
clude �B = 1 multi-nucleon decays such as pn ! e+n
or pp ! e+�+ here, some of which were searched for in
Ref. [62]. We also omit showing processes that violate
Lorentz or charge symmetry.

In two-body decay modes, kinematics and phase-space
considerations uniquely determine the resulting energy-
momentum distribution of the resulting final-state parti-
cles, making these searches highly model independent.
For multi-body decays, additional model dependence
from dynamics comes into play, as discussed for example
in Ref. [80]. Multi-body searches can furthermore su↵er
from lowered detection e�ciencies and enhanced system-
atic uncertainties, e.g. from multiple hadronic/nuclear in-

Channel |�(B � L)| ��1

1030 yr

p ! e+ + � 0 41000 [72]

p ! e+ + ⇡0 0 16000 [24]

p ! e+ + ⌘ 0 10000 [73]

p ! e+ + ⇢0 0 720 [73]

p ! e+ + ! 0 1600 [73]

p ! e+ +K0 0 1000 [74]

p ! e+ +K⇤,0 0 84 [65]

p ! µ+ + � 0 21000 [72]

p ! µ+ + ⇡0 0 7700 [24]

p ! µ+ + ⌘ 0 4700 [73]

p ! µ+ + ⇢0 0 570 [73]

p ! µ+ + ! 0 2800 [73]

p ! µ+ +K0 0 1600 [75]

p ! ⌫ + ⇡+ 0,2 390 [76]

p ! ⌫ + ⇢+ 0,2 162 [65]

p ! ⌫ +K+ 0,2 5900 [77]

p ! ⌫ +K⇤,+ 0,2 130 [78]

n ! e� + ⇡+ 2 65 [79] (5300⇤ [73])

n ! e� + ⇢+ 2 62 [79] (217⇤ [65])

n ! e� +K+ 2 32 [62]

n ! e� +K⇤,+ 2

n ! e+ + ⇡� 0 5300 [73]

n ! e+ + ⇢� 0 217 [65]

n ! e+ +K� 0 17 [65]

n ! e+ +K⇤,� 0

n ! µ� + ⇡+ 2 49 [79] (3500⇤ [73])

n ! µ� + ⇢+ 2 7 [79] (228⇤ [65])

n ! µ� +K+ 2 57 [62]

n ! µ+ + ⇡� 0 3500 [73]

n ! µ+ + ⇢� 0 228 [65]

n ! µ+ +K� 0 26 [65]

n ! ⌫ + � 0,2 550 [28]

n ! ⌫ + ⇡0 0,2 1100 [76]

n ! ⌫ + ⌘ 0,2 158 [65]

n ! ⌫ + ⇢0 0,2 19 [79]

n ! ⌫ + ! 0,2 108 [65]

n ! ⌫ +K0 0,2 130 [74]

n ! ⌫ +K⇤,0 0,2 78 [65]

TABLE I. Kinematically allowed two-body nucleon decays
with 90% C.L. upper limit on the partial decay width �. Here,
⌫ can be a neutrino or antineutrino of any flavor, which does
not change the observation signature. The column |�(B�L)|
indicates the violation of B � L in the decay, which depends
on whether ⌫ is a neutrino or an antineutrino. An asterisk
denotes a limit that has been translated using the properties
of WC detectors (e� ⇠ e+ ⇠ �, µ� ⇠ µ+, ⇡� ⇠ ⇡+) but was
not given explicitly in the references. Unconstrained channels
are still subject to limits from inclusive searches, discussed in
Sec. IV. See text for more details.
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