

Leander Fischer ICHEP Bologna, 09.07.2022







#### **Motivation**

- Observation of neutrino oscillations proves that (at least two) neutrinos have mass:
  - SM extensions including RH (sterile)
     neutrinos provide a good explanation to the
     origin of neutrino masses (e.g. through
     seesaw mechanism)
- These Heavy Neutral Leptons (HNLs) could also explain many other open questions in cosmology and particle physics

arxiv:10.1142

Matter-antimatter asymmetry (leptogenesis)

arxiv:9303287v1

Dark matter

arxiv:1906.02106v3

Anomalies in oscillation experiments



#### IceCube and DeepCore



# (Very) Low Energy Event Topologies



Cascade  $(v_e/v_\tau$  Charged- and all v Neutral-Current)



Track  $(v_{\mu} \text{Charged-Current})$ 

#### **3 Flavor Neutrino Oscillations**

Flavor eigenstates  $(v_{\alpha})$  are superposition of mass eigenstates  $(v_{\kappa})$ 

Flavor (e, 
$$\mu$$
,  $\tau$ )  $|v_{\alpha}\rangle = \sum U_{\alpha \kappa}^* |v_{\kappa}\rangle$  Mass (1, 2, 3)

 Neutrinos produced in the atmosphere propagate through earth and oscillate into other flavors (depending on squared mass splittings and mixings)







#### **3 Flavor Neutrino Oscillations**

Flavor eigenstates  $(v_{\alpha})$  are superposition of mass eigenstates  $(v_{\kappa})$ 

Flavor (e, 
$$\mu$$
,  $\tau$ )  $|v_{\alpha}\rangle = \sum U_{\alpha \kappa}^* |v_{\kappa}\rangle$  Mass (1, 2, 3)

 Neutrinos produced in the atmosphere propagate through earth and oscillate into other flavors (depending on squared mass splittings and mixings)







## **10 Year Data Sample**

- Energy in range **5 GeV 300 GeV**, mostly coming through earth, **up-going** ( $\cos(\theta) < 0.3$ )
- Very low atmospheric muon and noise contamination



| Event type         | Events (10 years) | Fraction |
|--------------------|-------------------|----------|
| v <sub>e</sub> -CC | 48234 ± 75        | 23%      |
| $v_{\mu}$ -CC      | 127725 ± 129      | 61%      |
| $v_{\tau}$ -CC     | 9678 ± 21         | 4.6%     |
| v-NC               | 22245 ± 51        | 10.6%    |
| $\mu_{atm.}$       | 1463 ± 87         | 0.7%     |
| Noise              | ~ 0               | <0.03%   |
| Total              | 209346 ± 182      |          |

#### Measuring Oscillations with IceCube/DeepCore

- Observe distortions in 3-d analysis bins (energy, zenith, PID)
- PID aims to distinguish  $v_{\mu}$ -CC (tracks) from other events (cascades)



## Measuring Oscillations: Latest and Upcoming Results

• Latest atmospheric neutrino mixing results using "golden" subsample (yellow):

$$\sin^2(\Theta_{23}) = 0.505$$
,  $\Delta m_{32}^2 = 2.41e-3 \text{ eV}^2$ 





## **Heavy Sterile Neutrino (HNL) Model**

• Additional fourth **heavy mass state**  $v_{a}$ 



- Mixing with Standard Model neutrinos through extended 4x4 mixing matrix (3 new mixing angles, 2 new CP phases)
- Neutrino oscillations deliver atmospheric  $v_{\tau}$  beam
  - $\rightarrow$  focus on  $|U_{\tau 4}|^2$  mixing, other parameters already very well constrained:  $O_e(10^{-5}-10^{-7})$ ,  $O_{\mu}(10^{-6}-10^{-9})$  around 1 GeV mass





#### **HNL Event Signature – Double Cascade**



Heavy mass state decaying into SM particles



# (Very) Low Energy Event Topologies



Track  $(v_{\mu}$ -CC)



Cascade  $(v_e/v_\tau$ -CC and all v NC)



Double Cascade (HNL)

# (Very) Low Energy Event Topologies



Track  $(v_{,,}$ -CC, ideal case)



Cascade  $(v_e/v_\tau\text{-CC}, \text{ all } v \text{ NC}, \text{ some } v_u\text{-CC}, \text{ many HNL})$ 



Double Cascade (HNL, ideal case)

## **HNL Analysis**

- Oscillated atmospheric  $v_{\tau}$  events (~2.5 k in 10 years) provide opportunity to look for HNL events
- Dedicated HNL signal simulation ( $v_{\tau}$ -production channel) is being refined
- Low energy double cascade reconstruction is being optimized



#### **HNL Analysis**

- Oscillated atmospheric  $v_{\tau}$  events (~2.5 k in 10 years) provide opportunity to look for HNL events
- Dedicated HNL signal simulation ( $v_{\tau}$ -production channel) is being refined
- Low energy double cascade reconstruction is being optimized
- Takeaway:
  - Few HNLs resolvable as double cascades (model effects/low energy/detector sparsity)
  - Intrinsic background (other flavors) can mimic double cascade signature (detector sparsity)
  - Isolating pure double-cascade is quite challenging



#### **HNL Analysis Principle**



## **HNL Analysis Outlook**

- Increasing  $|U_{\tau 4}|^2$  increases HNL *signal* events on top of SM neutrino *background* 
  - $\rightarrow$  test  $|U_{\tau 4}|^2$  for a few discrete HNL masses
  - → produce first (ever) IceCube HNL result using 10 years of data

# **HNL Analysis Outlook**

- Increasing  $|U_{\tau 4}|^2$  increases HNL signal events on top of SM neutrino background
  - $\rightarrow$  test  $|U_{\tau 4}|^2$  for a few discrete HNL masses
  - → produce first (ever) IceCube HNL result using 10 years of data
- Preliminary expectation for  $|U_{\tau 4}|^2=10^{-2}$ ,  $m_{HNI}=1$  GeV:
  - Approximately 73%, 25%, and 2% would end up in the standard oscillation cascade-, more track-, and very track-like bin



# Backup

## **10 Year Data Sample**

- Energy in range 5 GeV 300 GeV, mostly up-going e.g. coming through earth (cos(θ) < 0.3)</li>
- Very low atmospheric muon and noise contamination



| Event type      | Events (10 years) | Fraction |
|-----------------|-------------------|----------|
| $v_{\rm e}$ -CC | 48234 ± 75        | 23%      |
| $v_{\mu}$ -CC   | 127725 ± 129      | 61%      |
| $v_{\tau}$ -CC  | 9678 ± 21         | 4.6%     |
| v-NC            | 22245 ± 51        | 10.6%    |
| $\mu_{atm.}$    | 1463 ± 87         | 0.7%     |
| Noise           | ~ 0               | <0.03%   |
| Total           | 209346 ± 182      |          |
|                 | •                 |          |

16%/72%/12% from  $v_e/v_\mu/v_\tau$ 

# **Measuring Oscillations – PID**

- BDT to distinguish tracks and cascades
  - Trained on reconstructed quantities like energy, tracklength and track, cascade
  - Trained on up-going, un-oscillated events



**IceCube Preliminary** 

 $v_{\mu}$  CC (True Tracks) - train

(Simulation)

 $10^{-5}$ 

 $10^{-6}$ 

DESY. | Search for heavy neutral lepton production and decay | Leander Fischer | ICHEP Bologna, 09.07.22

#### **Measuring Oscillations – PID**

#### ~PeV energies!!







$$V_{\mu} + N \rightarrow \mu^{-} + X$$

$$V_x + N \rightarrow V_x + X$$
  
 $V_e + N \rightarrow e^- + X$ 

$$V_{\tau} + N \rightarrow \tau^{-} + X$$

$$\tau^{-} \rightarrow V_{\mu,e} + \mu^{-}/e^{-} + V_{\tau} \text{ or }$$

$$\tau^{-} \rightarrow V_{\tau} + \pi^{-}/K^{-} + X$$

Track

Cascade

**Double Cascade** 

#### **MiniBooNE**

- Most experimental results are consistent with oscillations in three neutrinos
  - But: There are unexplained experimental anomalies like the MiniBooNE low energy excess (LEE)

#### MiniBooNE:

- Intense neutrino beam (Booster Neutrino Beam, Fermilab)
- Pure mineral oil (CH<sub>2</sub>) Cherenkov/scintillation detector
- Measured  $v_e/\overline{v}_e$  CCQE events from  $v_{\mu}$  beam



#### MiniBooNE Detector

#### MiniBooNE low energy excess

- 18.75 x 10<sup>20</sup> protons-on-target (neutrino mode)
- Total excess of 638.0+-132.8 electron-like events (4.8σ)
- Energy range: 200 MeV < E < 1250 MeV



**Table based reconstruction** 

Poissonian likelihood:

$$\mathrm{LLH_{mp}} = \sum_{i}^{M} \sum_{\tau}^{T_i} \left[ N_{i\tau} \cdot \log(\mu_{i\tau}) - \mu_{i\tau} + \log\left(\Gamma(N_{i\tau}+1)\right) \right]$$
 times

**DOMs** 



#### Likelihood

- Poissonian likelihood:
  - Compare number of observed PE (n)
    per DOM per time slice to expected
    number (y) for given event hypothesis

$$p(n/\mu) = \frac{\mu^n \cdot e^{-\mu}}{n!}$$

total expected charge = expected + noise

$$\frac{(\mu_{i,j}+\rho_{i,j})^{n_{i,j}}\cdot e^{-(\mu_{i,j}+\rho_{i,j})}}{n_{i,j}!}$$

$$L = \prod_{i \in DOMs} \prod_{j \in time \ bins}$$

Negative Logarithm (function to minimize)

$$\ln(L) = \sum_{i \in DOMs} \sum_{j \in \textit{time bins}} n_{i,j} \cdot \ln(\mu_{i,j} + \rho_{i,j}) - \mu_{i,j} - \rho_{i,j} - \ln(n_{i,j}!)$$