

Search for dark photon decaying into μ⁺μ⁻ pair with NA62 in beam-dump mode

Elisa Minucci*

on behalf of the NA62 Collaboration

Outline:

- Introduction
- The NA62 experiment in beam-dump mode
- Search for $A' \to \mu^+ \mu^-$
- Summary & Prospects

erc

European Research Council

* elisa.minucci@cern.ch

ICHEP Conference 2022 July 06-13 Bologna, Italy

-+ hadrons

1.0

Several New Physics models have been proposed as extension of the Standard Model:

- Vector portal Dark Photons \rightarrow
- Scalar portal \rightarrow Dark Scalars
- Neutrino portal \rightarrow Heavy Neutral Leptons
- Axion portal Axion-like particles \rightarrow

A simple model introduces a new vector field $F'_{\mu\nu}$ symmetric under U(1) transformation which feebly interacts with the SM fields.

Kinetic-mixing interaction with the SM hypercharge $B^{\mu\nu}$:

$$\mathcal{L} \subset -arepsilon rac{1}{2cos heta_W} F'_{\mu
u} B^{\mu
u}$$

The mass of the Dark Photon (DP), M_{a} , , and the coupling ϵ are free parameters.

For masses $M_{A'}$ < 700 MeV/c² the DP decay width is dominated by decay to lepton-antilepton final states

0.2 0.80 0.2 0.6 0.8 M_A [GeV/c²]

0.8

B(A' → SM)

0.4

Two production mechanisms are in action after a proton-nucleus interaction:

- one inducing a "direct" **A'-bremsstrahlung-like** production $\rightarrow pN \rightarrow XA', A' \rightarrow l^+l^-$
- one corresponding to a **meson-mediated** tertiary production $\rightarrow pN \rightarrow XM, \ M \rightarrow A'\gamma(\pi^0), \ A' \rightarrow l^+l^ M=\pi^0,\eta,\omega.$.

The NA62 experiment at the CERN SPS

Broad physics program

- Main goal measure $K^+ \rightarrow \pi^+ vv$ branching ratio
- Rare and forbidden kaon decays
- Precision measurements
- Exotics searches(beam-dump mode): DP, HNLs, ALPs

Due to the feeble interaction with the SM particles, DPs produced in the TAXes can reach the NA62 fiducial volume more than 100 m downstream, and therein decay into a lepton-antilepton pair.

Downstream Upstream X [m] 2 STRAW LAV C2 GTK MIN 1 Target **KTAG** SAC 0 CHANT] TAXes are movable RICH collimators -1 \bigcirc Dump LKr \bigcirc -2 400 GeV/c protons \bigcirc 0 100 150 200 0 250 Z [m] \bigcirc **STRAW:** track charged particle **NewCHOD:** fast detector used for the trigger (σ ~600 ps) $(\bigcirc$ MUV3: muon veto/ID detector

LKr: electromagnetic calorimeter for PID and photon identification **LAV** (Large Angle Veto): photon veto detectors

Optimised conditions for the beam-dump setup:

- TAXes closed and target away from the beam
- improved sweeping from dipoles downstream of TAXes
- beam intensity 1.5 higher than the nominal 1.1 x10¹² protons per second per spill

Data sample

Collected (1.40 \pm 0.28) x 10¹⁷ POT in ~ 10 days of data taking

POT measured by beam secondary emission monitor

Two trigger lines for charged final states:

- 1) Single-track trigger asking for one hit in the NewCHOD: Q1/D_s (D_s=20) (~14kHz)
- 2) Two-track trigger, asking for two hits in the NewCHOD: H2 (~18kHz)

One control trigger based on the LKr, used to measure the efficiency of the NewCHOD-based trigger (~4kHz)

Q1 trigger efficiency: ϵ_{O1} ~ 99.8%

H2 trigger efficiency: ϵ_{H2} ~ 98%

NA62

NA62 expected sensitivity: geometrical acceptance

Sensitivity plot separated per production mechanism assuming 0 observed events

Sensitivity plot separated per decay final state assuming 0 observed events

The grey underlying exclusion is the one adapted by the PBC and originally based on: Phys. Rev. Lett. 126, no.18, 181801 (2021)

Search for A' $\rightarrow \mu^{+}\mu^{-}$: Analysis strategy

The signal signature is defined by a lepton-antilepton reconstructed vertex within the NA62 fiducial volume and a primary vertex between the direction of the lepton-antilepton pair and the proton beam at the TAXes

Event selection requires:

- reconstructed track quality
- track timing coincidence with the trigger
- muon identification with calorimeter and muon detector
- no in-time activity at large angle veto detectors (LAV) to reduce possible selection of vertices derived by interaction of incoming muons with the material in the LAVs.
- Signal region (plot)

CR= control region SR= signal region

 CDA_{TAX} : closest distance of approach between the beam direction at the TAX entrance and the lepton-antilepton pair direction $\Rightarrow \sigma_{CDA} = 7 \text{ mm}$

 Z_{TAX} : longitudinal position $\rightarrow \sigma_7 = 5.5 \text{ m}$

*SR not optimised with respect to the signal and background distributions

CR and SR blinded

O(200) background reduction, despite higher intensity thanks to the beam line optimization

E.Minucci - ICHEP 2022 First result for searches of exotic decays at NA62

Combinatorial background:

background from random superposition of two uncorrelated "halo" muons

- Selected single tracks in a data sample orthogonal to the one used for the analysis
- Track pairs are artificially built to emulate a random superposition
- Apply same event selection criteria as in the analysis
- Each track pair has a weight independent on the rate to account for the 10 ns time window

Prompt background:

background from secondaries of a muon interaction with the traversed material

- Muon kinematic distributions extracted from selected single muons in data (backward MC)
- To correct the spread induced by the backward-forward process (straggling, multiple scattering) an unfolding technique is applied to better reproduce the data distributions.
- Relative uncertainty of MC expectation ~ 100%

Prompt background negligible with respect to combinatorial (UL @ 90%CL is 30% of combinatorial)

Data-MC comparison: control samples

E.Minucci - ICHEP 2022 First result for searches of exotic decays at NA62

Data-MC comparison: signal sample, CRs opened

Probability to observe 1 or more events in the SR is 1.59%

	$N_{exp} \pm \delta N_{exp}$	N _{obs}	$\mathbf{p} \ (\mathbf{N} \ge \mathbf{N}_{obs})$	$p(L \le L_{obs})$
Outside CR	26.3 ± 3.4	28	0.41	0.74
CR1	0.29 ± 0.04	1	0.25	0.25
CR2	0.58 ± 0.07	1	0.44	0.44
CR3	1.70 ± 0.22	2	0.50	0.68
CR1+2+3	2.57 ± 0.33	4	0.26	0.24
CR	0.17 ± 0.02	0	1.0	1.0
SR	0.016 ± 0.002	_	_	_

E.Minucci - ICHEP 2022 First result for searches of exotic decays at NA62

Final result

The first preliminary result on search for production and decay of an exotic particle from data collected by the NA62 experiment in beam-dump mode has been presented

A cut-based counting experiment blind analysis to search for $A' \rightarrow \mu^+ \mu^-$ has been performed on the data collected in 2021.

With (1.4 \pm 0.28) x 10¹⁷ POT a 90% CL upper limit has been set, exploring a new region of the parameter space.

Searches for decays of exotic particles to e^+e^- , $\gamma\gamma$, $\pi^+\pi^-\gamma$ final states, using the data collected in 2021, are ongoing.

NA62 intends to take 10¹⁸ POT in beam dump in 2022-2025 with interesting perspectives on dark photons, ALPs, dark scalars and HNLs

Backup slides

Information on the observed event in the SR

E.Minucci - ICHEP 2022 First result for searches of exotic decays at NA62

E.Minucci - ICHEP 2022 First result for searches of exotic decays at NA62

Region in CDA _{TAX} - Z _{TAX}	Combinatorial	Prompt	Upstream-prompt
CR	0.17 ± 0.02	< 0.033	< 0.052
SR	0.016 ± 0.002	< 0.003	< 0.005

Summary of expected background events for the search of $A' \rightarrow \mu^+ \mu^-$ with the related uncertainty. The limits reported are defined with a 90% confidence level