

Pair production of charged IDM scalars at high energy CLIC

<u>J. Klamka</u>, A.F. Żarnecki University of Warsaw

arXiv:2201.07146

Compact Linear Collider

UW

- Novel two-beam acceleration technique
- <u>Normal-conducting</u> technology
- High 100 MeV/m gradient, 12 GHz accelerating structures
- **±80% electron beam** polarisation
- Implementation in <u>3 energy stages</u>

.

.

<u>380 GeV stage</u> (1 ab⁻¹):

- presicion Higgs measurements
- presicion **top** measurements
- top threshold scan

1.5 TeV (2.5 ab-1), 3 TeV (5 ab-1):

- Higgs self-coupling
- top Yukawa coupling

Dedicated **detector concept** optimised for **particle-flow** approach

more precision measurements: indirect **BSM** constraints

+ direct new physics searches at high energies

Inert Doublet Model

$$\phi_{SM} = \begin{pmatrix} \phi^+ \\ \frac{1}{\sqrt{2}}(v+h+i\xi) \end{pmatrix} \qquad \phi_D = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(H+iA) \end{pmatrix}$$
"Higgs boson": h
New scalars: H[±], H, A

- Additional scalars do not couple to fermions on tree level (Z₂ symmetry)
- The lightest of new particles is stable \rightarrow **dark matter candidate**
- 5 free parameters in the model with existing constraints

Inert Doublet Model

Considered <u>23 high-mass benchmark points</u> from JHEP 1812 (2018) 081, arXiv:1809.07712 for two production scenarios:

IDM scalar production previously studied in leptonic channel (JHEP07 (2019) 053)

Discovery reach **limited** up to scalar masses $\sim 250 \text{ GeV}$ and $\sim 500 \text{ GeV}$ at 1.5 TeV and 3 TeV by production cross section

Order of magnitude higher cross section expected for **semi-leptonic** channel

Expected **signature** of the final state: One lepton: e^{\pm} or μ^{\pm} and a pair of jets

> cut-based preselection + multivariate analysis (BDTs)

Order of magnitude higher cross section expected for **semi-leptonic** channel

Expected **signature** of the final state: One lepton: e^{\pm} or μ^{\pm} and a pair of jets

- Use CLIC beam spectra for 1.5 TeV (2000 fb⁻¹) and 3 TeV (4000 fb⁻¹)
- \rightarrow assumed –80% e- beam polarisation statistics
- Generate samples with Whizard 2.7.0
- Use <u>Geant4</u> CLICdet model to simulate detector response for <u>5 scenarios</u>

Extend to <u>all 23 benchmarks</u> using <u>fast simulation</u>

Huge difference between scenarios with large and small $m_{H^\pm}-m_H$

5 scenarios used in full simulation study selected to cover wide range of mass splittings

LCD-Note-2011-006

 $\begin{array}{c} & & \\ \hline \\ \textbf{CLIC: } 44 \ \mu \textbf{m} \\ \textbf{ILC: } 300 \ \mu \textbf{m} \end{array}$

CLIC: 0.5 ns, 0.15 m ILC: 369 ns, 111 m

Huge **beam-induced backgrounds** at CLIC

 $\gamma\gamma
ightarrow had.$ most important (physics, performance)

Included in full sim., mitigated using timing cuts

Timing cuts **not included** in Delphes CLICdet cards!

 \rightarrow included in **approximate** way with **generator-level cuts**

Background (qqlv)

Signal (HP17)["]

- In HP17 scenario $W^{+/-}$ is far <u>off-shell</u>
- Overlay contribution in Delphes crucial for reproducing full simulation results

γγ → had. influence

- Residual difference between **full simulation** and **fast simulation** (with overlay included)
- Dedicated correction introduced, depending on the scalar mass difference

Results (Delphes + $\gamma\gamma \rightarrow$ had.)

- Two BDTs trained separately on the scenarios with off-shell $W^{+/-}$ and with on-shell $W^{+/-}$
- Conservative estimate of uncertainty: **100% uncertainty** on the applied correction
- Most scenarios $above \; 5\sigma$ discovery threshold

Summary

- CLIC sensitivity to charged IDM scalar pair-production studied with full and fast simulation
- Impact of the $\gamma\gamma\to{\rm had.}$ overlay events crucial for the analysis. A method to include the overlay in <u>CLICdet model</u> for Delphes was developed
- <u>Good agreement between full and fast simulation results</u> (with overlay). **Dedicated correction applied** to take residual differences into account.
- Most IDM benchmark points, with scalar masses up to 1 TeV, accessible at high-energy CLIC

Thank you!

arXiv:2201.07146

BACKUP

ICHEP2022, 7/07/2022 J. Klamka Pair production of charged IDM scalars at high energy CLIC

yy → had. influence

- Agreement between fast and full simulation significantly improved when overlay taken into account in Delphes.
- <u>Systematic differences remain</u> most likely due to underestimated background contributions.

- Final results scaled to 1 fb for all benchmark scenarios, assuming 4 $ab^{\text{-1}}$ luminosity at both energy stages
- No visible dependence on the scalar mass or the energy
 - \rightarrow the results depend on the signal cross section, not on the scalar mass

Timing cuts

In full simulation we have BXs from 10 ns after the physical event

Approximate timing cuts

Additional timing cuts on PFOs to reduce $\gamma\gamma \rightarrow had$. backg.

Example: Accept tracks with $\underline{p}_{T} < 1 \text{ GeV}$ with $\underline{t} < 2 \text{ ns}$

1. Take gen-level $\gamma\gamma \rightarrow \text{had.}$ events in batches of N

2. Accept specific particles with a **probability** t/10 ns, where a timing cut t corresponds to number n of BXs

 \rightarrow e.g. for <u>t < 2 ns</u> one can accept <u>n=2</u> out of N=10

3. Overlay selected events on physical sample