Origin of Neutrino Mass on Convex Cone of Positivity

Xu Li Institute of High Energy Physics

July. 9 BSM session - ICHEP 2022

Based on 2202.12907 with Shun Zhou

Motivation

- Non-zero mass of neutrinos \rightarrow $O^{(5)} = \overline{L} \tilde{H} \tilde{H}^T L^c$ Oscillations of Atmospheric neutrinos, Solar neutrinos, Reactor neutrinos ...
- SM is not complete theory but an effective theory
 Tree-level completions for dim-5: type-I seesaw, type-II seesaw, type-III seesaw, ...
 [P. Minkowski,PLB(1977)] [W. Konetschny and W. Kummer, PLB(1977)] [R. Foot, et al, ZPC 44(1989)]
- New physics (UV) is very likely to couple to L and H doublets
- The seesaws are not distinguishable up to dim-5
 Model-depended predictions for low-energy observables appear at higher dim.

Target: A model-independent way to distinguish seesaws at higher dim. space

Recently developed geometry perspective of positivity bounds will help in the SMEFT framework

SMEFT, positivity and cone

 SMEFT framework: describe the IR behavior of some "UV completion", by integrating out its heavy dofs, with high-dimensional operators

$$\mathcal{L}_{ ext{EFT}} = \mathcal{L}_{ ext{SM}} + rac{C_i^{(5)}O_i^{(5)}}{\Lambda} + \sum_i rac{C_i^{(6)}O_i^{(6)}}{\Lambda^2} + \sum_i rac{C_i^{(7)}O_i^{(7)}}{\Lambda^2} + \sum_i rac{C_i^{(8)}O_i^{(8)}}{\Lambda^4} + \cdots$$

- Positive structure: axiomatic principles of QFT, including causality, unitarity, Lorentz symmetry... -> bounds for Wilson coefficients
 - 2-to-2 amplitude: $\mathcal{M}_{2\rightarrow 2}(s,t) = c_0 + c_2 s^2 + c_{2,1} s^2 t + \cdots c_{n,m} s^n t^m$
 - C2 > O; or in SMEFT: C⁽⁸⁾ > O [A. Adams et al., JHEP 06] [see also talk by S. D. Bakshi]
 - More bounds on higher-s dependence.

Recent development: [S. Ghosh et al., 2204.07617] [L.-Y. Chiang et al., 2204.07140] [S. D. Bakshi et al., 2205.03301] [D. Chowdhury et al., 2205.13762] [G. N. Remmen, N. L. Rodd, 2206.13524]

Geometry perspective: UVs as tree-completions for high-dim. operators, are distinguishable in the convex cone.
 [C.Zhang and S.-Y. Zhou, PRL(2020)]

Master formula

Convex cone nature

Two observations: $M^{ijkl} = \frac{1}{2\pi} \int_{(\epsilon\Lambda)^2}^{\infty} \frac{d\mu}{\mu^3} \sum_X \left[\mathcal{M}_{ij \to X} \ \mathcal{M}^*_{kl \to X} + (j \leftrightarrow l) \right]$

 M^{ijkl} is the positive linear combination of $\mathcal{M}_{ij \rightarrow X} \mathcal{M}^*_{kl \rightarrow X} + (j \leftrightarrow l)$

1. M^{ijkl} is inside the convex cone

Any vector inside cone can always be written as positive linear combination of E_i

$$ec{x}: \quad ec{x} = \sum_i w_i ec{E_i} \; (w_i \geq 0)$$

2. X belongs to the irreps of symmetry, M^{ijkl} can be the edge

$$\mathbf{r}_i \otimes \mathbf{r}_j = \sum_{\alpha} C^{i,j}_{\mathbf{r},\alpha} \mathbf{r} \qquad \qquad \begin{array}{c} \text{Clebsch-Gordan (CG)} \\ \text{coeffs.} \end{array}$$

$$M^{ijkl} = \frac{1}{2\pi} \int_{(\epsilon\Lambda)^2}^{\infty} \frac{d\mu}{\mu^3} \sum_{X} |\langle X|\mathcal{M}|\mathbf{r}\rangle|^2 \mathcal{G}_{\mathbf{r}}^{ijkl}$$

Generator :

 $\mathcal{G}_{\mathbf{r}}^{ijkl} \equiv \Sigma_{\alpha} C_{\mathbf{r},\alpha}^{i,j} (C_{\mathbf{r},\alpha}^{k,l})^* + (j \leftrightarrow l)$

[C.Zhang and S.-Y. Zhou,

PRL(2020)]

UV completions and Cone

Edge of cone

UV states in irreps

Cone constructed by Generators

 $\mathcal{G}_{\mathbf{r}}^{ijkl} \equiv \Sigma_{\alpha} C_{\mathbf{r},\alpha}^{i,j} (C_{\mathbf{r},\alpha}^{k,l})^* + (j \leftrightarrow l)$

Tree-level completions for Higher dim. operators

UV completions and Cone

Edge of cone

Cone constructed by Generators

 $\mathcal{G}_{\mathbf{r}}^{ijkl} \equiv \Sigma_{\alpha} C_{\mathbf{r},\alpha}^{i,j} (C_{\mathbf{r},\alpha}^{k,l})^* + (j \leftrightarrow l)$

UV states in irreps

 $O^{(5)} = \overline{L} \tilde{H} \tilde{H}^T L^{\rm c}$

 $\overline{L^{c}} \otimes H$ $\overline{L^{c}} \otimes L$ $\overline{L^{c}} \otimes H$ 133(irreps) $\overline{L^{c}} \otimes H$ $H \otimes H$ $\overline{L^{c}} \otimes H$ Type-IType-IIIType-III

Seesaw models

[L.-F. Li, PRD(1980)] [E. Ma, PRL(1998)]

• *LLHH*:

$$\begin{split} \mathcal{O}_1 &= (\bar{L}\gamma_\mu \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger D^\nu H \right), \\ \mathcal{O}_2 &= (\bar{L}\gamma_\mu \sigma^I \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger \sigma^I D^\nu H \right) \;; \end{split}$$

• LLLL:

 $\begin{aligned} \mathcal{O}_3 &= \partial_{\nu} \left(\bar{L} \gamma^{\mu} L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} L \right), \\ \mathcal{O}_4 &= \partial_{\nu} \left(\bar{L} \gamma^{\mu} \sigma^I L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} \sigma^I L \right) \;; \end{aligned}$

• *HHHH*:

$$\begin{split} \mathcal{O}_5 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\nu} H^{\dagger} D^{\mu} H \right), \\ \mathcal{O}_6 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\mu} H^{\dagger} D^{\nu} H \right), \\ \mathcal{O}_7 &= \left(D_{\mu} H^{\dagger} D^{\mu} H \right) \left(D_{\nu} H^{\dagger} D^{\nu} H \right) \,. \end{split}$$

L,H are assigned as the irrep 2 : thus X may be assigned as 1 or 3

CG coeffs.:

$$C^{ab}_{\mathbf{1},c} = \epsilon^{ab} , \quad C^{ab}_{\mathbf{3},c} = \left(\epsilon\sigma^{I}\right)^{ab} ;$$

$$\bar{C}^{ab}_{\mathbf{1},c} = \delta^{a}_{b} , \quad \bar{C}^{ab}_{\mathbf{3},c} = \left(\sigma^{I}\right)^{a}_{b} ,$$

X is Boson, i, j = 2, r = 1 or 3

		H_b	L_b	H_b^\dagger	$ar{L}_b$
$\mathcal{M}_{ij ightarrow {f r}}=$	H_a	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$
	L_a	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$x \bar{C}^{ab}_{\mathbf{1/3},c}$
	H_a^\dagger	$\pm \bar{C}^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$
	\bar{L}_a	$ar{C}^{ab}_{\mathbf{1/3},c}$	$ix \bar{C}^{ab}_{1/3,c}$	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$

x being the relative size of coupling between HH and LL

Get Generators!

$$\begin{split} \mathcal{G}_{\mathbf{r}}^{ijkl} &\equiv \Sigma_{\alpha} C_{\mathbf{r},\alpha}^{i,j} (C_{\mathbf{r},\alpha}^{k,l})^* + (j \leftrightarrow l) \\ &= \mathcal{M}_{ij \rightarrow \mathbf{r}} \ \mathcal{M}_{kl \rightarrow \mathbf{r}}^* + \mathcal{M}_{i\bar{l} \rightarrow \mathbf{r}} \ \mathcal{M}_{k\bar{j} \rightarrow \mathbf{r}}^* \end{split}$$

• *LLHH*:

$$\begin{split} \mathcal{O}_1 &= (\bar{L}\gamma_\mu \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger D^\nu H \right), \\ \mathcal{O}_2 &= (\bar{L}\gamma_\mu \sigma^I \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger \sigma^I D^\nu H \right) \;; \end{split}$$

• LLLL:

 $\mathcal{O}_{3} = \overline{\partial_{\nu} \left(\bar{L} \gamma^{\mu} L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} L \right),}$ $\mathcal{O}_{4} = \partial_{\nu} \left(\bar{L} \gamma^{\mu} \sigma^{I} L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} \sigma^{I} L \right) ;$

• *HHHH*:

$$\begin{split} \mathcal{O}_5 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\nu} H^{\dagger} D^{\mu} H \right), \\ \mathcal{O}_6 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\mu} H^{\dagger} D^{\nu} H \right), \\ \mathcal{O}_7 &= \left(D_{\mu} H^{\dagger} D^{\mu} H \right) \left(D_{\nu} H^{\dagger} D^{\nu} H \right) \,. \end{split}$$

L,H are assigned as the irrep 2 : thus X may be assigned as 1 or 3

CG coeffs.:

$$C^{ab}_{\mathbf{1},c} = \epsilon^{ab} , \quad C^{ab}_{\mathbf{3},c} = \left(\epsilon\sigma^{I}\right)^{ab} ;$$

$$\bar{C}^{ab}_{\mathbf{1},c} = \delta^{a}_{b} , \quad \bar{C}^{ab}_{\mathbf{3},c} = \left(\sigma^{I}\right)^{a}_{b} ,$$

X is Boson, $i, j = 2, \overline{2}, r = 1$ or 3

		H_b	L_b	H_b^\dagger	$ar{L}_b$
$\mathcal{M}_{ij ightarrow {f r}} =$	H_a	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$
	L_a	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$x \bar{C}^{ab}_{\mathbf{1/3},c}$
	H_a^\dagger	$\pm \bar{C}^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$
	\bar{L}_a	$ar{C}^{ab}_{\mathbf{1/3},c}$	$\mathrm{i}x \bar{C}^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$

x being the relative size of coupling between HH and LL

Get Generators!

$$\begin{split} \mathcal{G}_{\mathbf{r}}^{ijkl} &\equiv \Sigma_{\alpha} C_{\mathbf{r},\alpha}^{i,j} (C_{\mathbf{r},\alpha}^{k,l})^* + (j \leftrightarrow l) \\ &= \mathcal{M}_{ij \rightarrow \mathbf{r}} \ \mathcal{M}_{kl \rightarrow \mathbf{r}}^* + \mathcal{M}_{i\bar{l} \rightarrow \mathbf{r}} \ \mathcal{M}_{k\bar{j} \rightarrow \mathbf{r}}^* \end{split}$$

• *LLHH*:

$$\begin{split} \mathcal{O}_1 &= (\bar{L}\gamma_\mu \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger D^\nu H \right), \\ \mathcal{O}_2 &= (\bar{L}\gamma_\mu \sigma^I \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger \sigma^I D^\nu H \right) \;; \end{split}$$

• LLLL:

 $\begin{aligned} \mathcal{O}_3 &= \partial_{\nu} \left(\bar{L} \gamma^{\mu} L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} L \right), \\ \mathcal{O}_4 &= \partial_{\nu} \left(\bar{L} \gamma^{\mu} \sigma^I L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} \sigma^I L \right) \;; \end{aligned}$

• *HHHH*:

$$\begin{split} \mathcal{O}_5 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\nu} H^{\dagger} D^{\mu} H \right), \\ \mathcal{O}_6 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\mu} H^{\dagger} D^{\nu} H \right), \\ \mathcal{O}_7 &= \left(D_{\mu} H^{\dagger} D^{\mu} H \right) \left(D_{\nu} H^{\dagger} D^{\nu} H \right) \,. \end{split}$$

L,H are assigned as the irrep 2 : thus X may be assigned as 1 or 3

CG coeffs.:

$$C^{ab}_{\mathbf{1},c} = \epsilon^{ab} , \quad C^{ab}_{\mathbf{3},c} = \left(\epsilon\sigma^{I}\right)^{ab} ;$$

$$\bar{C}^{ab}_{\mathbf{1},c} = \delta^{a}_{b} , \quad \bar{C}^{ab}_{\mathbf{3},c} = \left(\sigma^{I}\right)^{a}_{b} ,$$

X is Fermion, i, j = 2, r = 1 or 3

		H_b	L_b	H_b^\dagger	$ar{L}_b$
$\mathcal{M}_{ij ightarrow {f r}} =$	H_a	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$
	L_a	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$x \bar{C}^{ab}_{\mathbf{1/3},c}$
	H_a^\dagger	$\pm \bar{C}^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$
	\bar{L}_a	$ar{C}^{ab}_{\mathbf{1/3},c}$	$ix \bar{C}^{ab}_{1/3,c}$	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$

x being the relative size of coupling between HH and LL

Get Generators!

$$\begin{split} \mathcal{G}_{\mathbf{r}}^{ijkl} &\equiv \Sigma_{\alpha} C_{\mathbf{r},\alpha}^{i,j} (C_{\mathbf{r},\alpha}^{k,l})^* + (j \leftrightarrow l) \\ &= \mathcal{M}_{ij \rightarrow \mathbf{r}} \ \mathcal{M}_{kl \rightarrow \mathbf{r}}^* + \mathcal{M}_{i\bar{l} \rightarrow \mathbf{r}} \ \mathcal{M}_{k\bar{j} \rightarrow \mathbf{r}}^* \end{split}$$

• *LLHH*:

$$\begin{split} \mathcal{O}_1 &= (\bar{L}\gamma_\mu \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger D^\nu H \right), \\ \mathcal{O}_2 &= (\bar{L}\gamma_\mu \sigma^I \mathrm{i}\overleftrightarrow{D_\nu}L) \left(D^\mu H^\dagger \sigma^I D^\nu H \right) \;; \end{split}$$

• LLLL:

 $\mathcal{O}_{3} = \overline{\partial_{\nu} \left(\bar{L} \gamma^{\mu} L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} L \right),}$ $\mathcal{O}_{4} = \partial_{\nu} \left(\bar{L} \gamma^{\mu} \sigma^{I} L \right) \partial^{\nu} \left(\bar{L} \gamma_{\mu} \sigma^{I} L \right) ;$

• *HHHH*:

$$\begin{split} \mathcal{O}_5 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\nu} H^{\dagger} D^{\mu} H \right), \\ \mathcal{O}_6 &= \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\mu} H^{\dagger} D^{\nu} H \right), \\ \mathcal{O}_7 &= \left(D_{\mu} H^{\dagger} D^{\mu} H \right) \left(D_{\nu} H^{\dagger} D^{\nu} H \right) \,. \end{split}$$

L,H are assigned as the irrep 2 : thus X may be assigned as 1 or 3

CG coeffs.:

$$C_{\mathbf{1},c}^{ab} = \epsilon^{ab} , \quad C_{\mathbf{3},c}^{ab} = \left(\epsilon\sigma^{I}\right)^{ab} ;$$

$$\bar{C}_{\mathbf{1},c}^{ab} = \delta_{b}^{a} , \quad \bar{C}_{\mathbf{3},c}^{ab} = \left(\sigma^{I}\right)_{b}^{a} ,$$

X is Fermion, $i, j = 2, \overline{2}, r = 1$ or 3

		H_b	L_b	H_b^\dagger	$ar{L}_b$
$\mathcal{M}_{ij ightarrow {f r}} =$	H_a	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$	$ar{C}^{ab}_{\mathbf{1/3},c}$
	L_a	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$x \bar{C}^{ab}_{\mathbf{1/3},c}$
	H_a^\dagger	$\pm \bar{C}^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$
	\bar{L}_a	$ar{C}^{ab}_{\mathbf{1/3},c}$	$\mathrm{i}x \bar{C}^{ab}_{\mathbf{1/3},c}$	$C^{ab}_{\mathbf{1/3},c}$	$xC^{ab}_{\mathbf{1/3},c}$

x being the relative size of coupling between HH and LL

Get Generators!

$$\begin{split} \mathcal{G}_{\mathbf{r}}^{ijkl} &\equiv \Sigma_{\alpha} C_{\mathbf{r},\alpha}^{i,j} (C_{\mathbf{r},\alpha}^{k,l})^* + (j \leftrightarrow l) \\ &= \mathcal{M}_{ij \rightarrow \mathbf{r}} \ \mathcal{M}_{kl \rightarrow \mathbf{r}}^* + \mathcal{M}_{i\bar{l} \rightarrow \mathbf{r}} \ \mathcal{M}_{k\bar{j} \rightarrow \mathbf{r}}^* \end{split}$$

Tree Completions for dim-8

Characteristic vectors

UV State	Spin	${ m SU}(2)_{ m L} \otimes { m U}(1)_{ m Y}$	Interaction	Seesaw	Extremal Ray	$ec{c}$
E	1/2	1_{-1}	$gar{E}\left(H^{\dagger}L ight)$		•	$rac{1}{2}(-1,-1,0,0,0,0,0)$
Σ_1	1/2	3_{-1}	$g ar{\Sigma}_1^I \left(H^\dagger \sigma^I L ight)$		×	$^{-1}{rac{1}{2}}(-3,1,0,0,0,0,0)$
N	1/2	1_{0}	$gar{N}\left(H^{ ext{T}}\epsilon L ight)$	Type-I	1	$rac{1}{2}(-1,1,0,0,0,0,0)$
Σ	1/2	3_0	$g ar{\Sigma}^{I} \left(H^{ ext{T}} \epsilon \sigma^{I} L ight)$	Type-III	×	$rac{1}{2}^{-}(-3,-1,0,0,0,0,0)$
${\cal B}_1$	1	1_1	$g\mathcal{B}_{1}^{\mu}\left[(H^{\dagger}\epsilon\mathrm{i}\overleftrightarrow{D_{\mu}}H^{*})+x(\bar{L^{\mathrm{c}}}\epsilon\mathrm{i}\overleftrightarrow{D_{\mu}}L) ight]$		×	$rac{1}{2}(0,0,x^2,-x^2,16,0,-16)$
Ξ_1	0	3_1	$g \Xi_1^I \left[M(H^{\dagger} \epsilon \sigma^I H^*) + x(\bar{L^c} \epsilon \sigma^I L) \right]$	Type-II	×	$rac{1}{2}\left(0,0,-3x^2,-x^2,0,16,0 ight)$
S	0	$1_{0\mathrm{S}}$	$gM\mathcal{S}\left(H^{\dagger}H ight)$		/	2(0,0,0,0,0,0,1)
B	1	$1_{0\mathrm{A}}$	$g \mathcal{B}^{\mu} \left[H^{\dagger} \mathrm{i} \overleftrightarrow{D_{ u}} H + x (\bar{L} \gamma_{\mu} L) ight]$		×	$-rac{1}{2}\left(0,0,-x^2,0,-4,4,0 ight)$
Ξ	0	${f 3}_{0{ m S}}$	$gM\Xi^{I}(H^{\dagger}\sigma^{I}H)$		×	2(0,0,0,0,2,0,-1)
\mathcal{W}	1	$3_{0\mathrm{A}}$	$g\mathcal{W}^{I\mu}\left[(H^{\dagger}\sigma^{I}\mathrm{i}\overleftrightarrow{D_{\mu}}H)+x(\bar{L}\gamma_{\mu}\sigma^{I}L)\right]$		×	$rac{1}{2}\left(0,0,0,-x^2,4,4,-8 ight)$

The three seesaws show up as a subset of completions

Tree Completions for dim-8

Characteristic vectors

UV State	Spin	${ m SU(2)_L}\otimes { m U(1)_Y}$	Interaction	Seesaw	Extremal Ray	$ec{c}$
E	1/2	1-1	$gar{E}\left(H^{\dagger}L ight)$		/	$rac{1}{2}(-1,-1,0,0,0,0,0)$
Σ_1	1/2	3_{-1}	$g ar{\Sigma}_1^I \left(H^\dagger \sigma^I L ight)$		× Fermion	$-\frac{1}{2}(-3,1,0,0,0,0,0)$
N	1/2	1_{0}	$gar{N}\left(H^{ ext{T}}\epsilon L ight)$	Type-I	/	$\frac{1}{2}(-1, 1, 0, 0, 0, 0, 0)$
Σ	1/2	3_0	$g ar{\Sigma}^{I} \left(H^{ ext{T}} \epsilon \sigma^{I} L ight)$	Type-III	×	$rac{1}{2}(-3,-1,0,0,0,0,0)$
${\mathcal B}_1$	1	1_1	$g \mathcal{B}_1^\mu \left[(H^\dagger \epsilon \mathrm{i} \overleftrightarrow{D_\mu} H^*) + x (\bar{L^c} \epsilon \mathrm{i} \overleftrightarrow{D_\mu} L) ight]$		× $\frac{1}{2}$ ($[0,0,x^2,-x^2,16,0,-16)$
Ξ_1	0	3_1	$g\Xi_1^I \left[M(H^{\dagger}\epsilon\sigma^I H^*) + x(\bar{L^c}\epsilon\sigma^I L) \right]$	Type-II	$ \mathbf{X} = \frac{\mathbf{f}}{2} $	$(0,0,-3x^2,-x^2,0,16,0)$
S	0	$1_{0\mathrm{S}}$	$gM\mathcal{S}\left(H^{\dagger}H ight)$		 Image: A start of the start of	2(0,0,0,0,0,0,1)
B	1	$1_{0\mathrm{A}}$	$g \mathcal{B}^{\mu} \left[H^{\dagger} \mathrm{i} \overleftrightarrow{D_{ u}} H + x (ar{L} \gamma_{\mu} L) ight]$		\checkmark $\frac{1}{2}$	${5}\left({0,0, - {x^2},0, - 4,4,0} ight)$
Ξ	0	${f 3}_{0{ m S}}$	$gM\Xi^{I}(H^{\dagger}\sigma^{I}H)$		×	2(0,0,0,0,2,0,-1)
W	1	${f 3}_{0{ m A}}$	$g\mathcal{W}^{I\mu}\left[(H^{\dagger}\sigma^{I}\mathrm{i}\overleftrightarrow{D_{\mu}}H)+x(\bar{L}\gamma_{\mu}\sigma^{I}L)\right]$		\checkmark $\frac{1}{2}$	$\left(0,0,0,-x^2,4,4,-8 ight)$
	NEW YORK					Boson

The Boson and Fermion UVs live in different subspaces of the dim-7 Coeff. space

Cross Section of the Cone

UV states are Fermions

UV states are Bosons

 $\begin{array}{l} \overline{\mathcal{O}}_1 = (\bar{L} \gamma_\mu \mathrm{i} \overleftrightarrow{D_\nu} L) \left(D^\mu H^\dagger D^\nu H \right), \\ \overline{\mathcal{O}}_2 = (\bar{L} \gamma_\mu \sigma^I \mathrm{i} \overleftrightarrow{D_\nu} L) \left(D^\mu H^\dagger \sigma^I D^\nu H \right) \end{array}$

$$(x, y, z) = \frac{A(C_i)}{C_3 + 2C_4 - 2C_5 - 3C_6 - C_7}$$

$$A(C_i) = (-0.7C_3 + 0.69C_4 + 0.11C_5 + 0.13C_6 + 0.057C_7)$$

 $+ 0.85C_5 - 0.5C_6 - 0.16C_7, -0.019C_3 + 0.31C_6 - 0.95C_7)$

 $0.031C_{3}$

Convex Optimization

UV states are Fermions

Conversely extract the lower bounds on the scale of UV [C. Zhang, 2112.11665]

$$\vec{C}(\lambda) \equiv \vec{C}_0 - \lambda \vec{c_i} = \sum_{j \neq i} \omega_j \vec{c_j} + (\omega_i - \lambda) \vec{c_i} .$$

Conic optimization:

Convex Optimization

UV states are Fermions

Conversely extract the lower bounds on the scale of UV [C. Zhang, 2112.11665]

$$\vec{C}(\lambda) \equiv \vec{C}_0 - \lambda \vec{c_i} = \sum_{j \neq i} \omega_j \vec{c_j} + (\omega_i - \lambda) \vec{c_i} .$$

Conic optimization:

maximize	λ
subject to	$ec{C} - \lambda ec{c_i} \subset \mathcal{C}$
	$(\vec{C} - \vec{C_0}) \cdot A \cdot (\vec{C} - \vec{C_0}) \le \Delta$

$ec{C}_0$	E	Σ_1	N	Σ
(-1/2, 1/2)	∞	∞	≥ 1.0	∞
(-3/2, 0)	≥ 0.9	≥ 1.07	≥ 0.9	≥ 1.07
$(-3/2,0)$ with $\Delta = 0.1$	≥ 0.85	≥ 1.0	≥ 0.85	≥ 1.0
$(0,0)$ with $\Delta = 0.1$	≥ 1.22	≥ 1.5	≥ 1.22	≥ 1.5

Summary

- Positive structures arise at the dim-8 level in EFT coefficient space, as a consequence of axiomatic QFT principles.
- To give Weinberg operator, the new physics is very likely to couple to L and H, thus building the cone structure of LLHH dim-8 space is helpful to probe new physics.
 - the irreps of symmetry form the cone, seesaw models can naturally appear.
- Conversely probing the scale of UV states is realized by conic optimization.

- To formulate this approach, **symmetries of the system help** (will also discuss cases without symmetries)
- Make use of symmetries of the problem (SM symmetries, helicities)
- Dispersion relation: $M^{ijkl} = \sum_{X}' \int_{(\epsilon\Lambda)^2}^{\infty} \frac{d\mu m_X{}^{ij} m_X{}^{kl}}{\pi(\mu \frac{1}{2}M^2)^3} + (j \leftrightarrow l)$

• P_r^{ijkl} is the projective operator of an irrep r, obtained by CG coefficients.

$$P_{r}^{ijkl} = \sum_{\alpha} C_{i,j}^{r,\alpha} \left(C_{k,l}^{r,\alpha} \right)^{*}$$

• The generators are simply (subset of) $P_r^{i(j|k|l)}$

• Infer UV model from EFT measurements

Inverse problem: Given the measured values of the operator coefficients around the electroweak scale, to what extend can we possibly determine the nature of the new physics beyond the SM? [Gu, Wang, 2008.07551] see also [S. Dawson et al. 2007.01296] [N. Arkani-Hamed et al. hep-ph/0512190]

- Testing and confirming the SM: Null result of measurements at dim-6 does not exclude all BSM, but does at dim-8 by using positivity bounds
- <u>Dim-6: no positivity, different states may</u> <u>cancel each other' s effects.</u>
 - E.g., scalar and vector generate 4– fermion operators with opposite signs.
 - No UV particle can be absolutely excluded.
- <u>Dim-8: with positivity, different states are</u>
 <u>not allowed to cancel.</u>
 - All states can be exclude to some absolute scale. (by using posi. bound)
 - Unlike dim-6 cannot lift this limit by adding more and more BSM states.
 - A robust confirmation of the SM.

[2009.02212 B. Fuks, Y. Liu, CZ, S.-Y. Zhou]

