Search for new particles at the ILC

Mikael Berggren¹ on behalf of the ICFA-IDT-WG3 BSM group

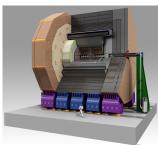
¹DESY, Hamburg

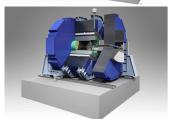
ICHEP2022, Bologna, July, 2022

CLUSTER OF EXCELLENCE
QUANTUM UNIVERSE

The ILC strong points for searches

- e^+e^- collider with E_{CMS} = 250 500 (- 1000) GeV, and polarised beams
- e^+e^- means EW-production \Rightarrow Low background.
 - Detectors w/ $\sim 4\pi$ coverage.
 - Rad. hardness not needed: only few % X₀ in front of calorimeters.
 - No trigger
- e^+e^- means colliding point-like objects \Rightarrow initial state known
- 22 year running \rightarrow 2 ab⁻¹ @ 250 GeV + 4 ab⁻¹ @ 500 GeV.
- Construction under political consideration in Japan.


ILC Detectors: the ILD and SiD concepts


Physics requirements, SM and BSM:

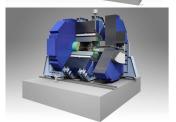
- $\sigma(1/p_{\perp}) = 2 \times 10^{-5} \text{ GeV}^{-1}$
- JER ~ 3-4%
- $\sigma(d_0) < 5\mu$
- hermeticity down to 5 mrad
- triggerless operation.

Leads to key features of the detector:

- High granularity calorimeters optimised for particle flow
- Power-pulsing for low material.

ILC Detectors: the ILD and SiD concepts

Physics requirements, SM and BSM:


- $\sigma(1/p_{\perp}) = 2 \times 10^{-5} \text{ GeV}^{-1}$
- JER ~ 3-4%
- $\sigma(d_0) < 5\mu$
- hermeticity down to 5 mrad
- triggerless operation.

Leads to key features of the detector:

- High granularity calorimeters optimised for particle flow
- Power-pulsing for low material.

BSM at ILC

In this talk: Concentrating on

- SUSY:
 - The most complete theory of BSM.
 - Most studied model with serious simulation: In most cases, full simulation of ILD, with all SM backgrounds, all beam-induced backgrounds included.
 - Serves as a boiler-plate for BSM: almost any new topology can be obtained in SUSY...
 - Under some stress(?) by LHC. However, ILC offers
 - Complete coverage of Compressed spectra the most interesting
 - Loop-hole free searches.
- + A few slides on non-SUSY BSMs...

BSM at ILC

In this talk: Concentrating on

- SUSY:
 - The most complete theory of BSM.
 - Most studied model with serious simulation: In most cases, full simulation of ILD, with all SM backgrounds, all beam-induced backgrounds included.
 - Serves as a boiler-plate for BSM: almost any new topology can be obtained in SUSY...
 - Under some stress(?) by LHC. However, ILC offers
 - Complete coverage of Compressed spectra the most interesting case.
 - Loop-hole free searches.
- + A few slides on non-SUSY BSMs...

BSM at ILC

In this talk: Concentrating on

- SUSY:
 - The most complete theory of BSM.
 - Most studied model with serious simulation: In most cases, full simulation of ILD, with all SM backgrounds, all beam-induced backgrounds included.
 - Serves as a boiler-plate for BSM: almost any new topology can be obtained in SUSY...
 - Under some stress(?) by LHC. However, ILC offers
 - Complete coverage of Compressed spectra the most interesting case.
 - Loop-hole free searches.
- + A few slides on non-SUSY BSMs...

SUSY: What do we know?

Naturalness, hierarchy, DM, g-2 all prefer light electroweak sector.

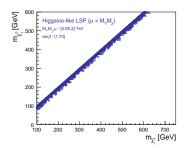
- Except for 3rd gen. squarks, the coloured sector doesn't enter the game.
- Many models and the global set of constraints from observation points to a compressed spectrum.
- So, most sparticle-decays are via cascades, with small $\Delta(M)$ at the end.
- For this, current LHC limits are for specific models. LEP2 sets the scene.

SUSY: What do we know?

Naturalness, hierarchy, DM, g-2 all prefer light electroweak sector.

- Except for 3rd gen. squarks, the coloured sector doesn't enter the game.
- Many models and the global set of constraints from observation points to a compressed spectrum.
- So, most sparticle-decays are via cascades, with small $\Delta(M)$ at the end.
- For this, current LHC limits are for specific models. LEP2 sets the scene.

SUSY: What do we know?

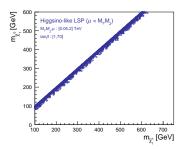

Naturalness, hierarchy, DM, g-2 all prefer light electroweak sector.

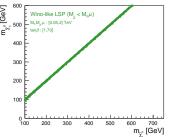

- Except for 3rd gen. squarks, the coloured sector doesn't enter the game.
- Many models and the global set of constraints from observation points to a compressed spectrum.
- So, most sparticle-decays are via cascades, with small $\Delta(M)$ at the end.
- For this, current LHC limits are for specific models. LEP2 sets the scene.

- Higgsino or Wino LSP:
 - If the LSP is Higgsino or a Wino, several other bosinos must be close to the LSP.
 - ⇒ Compressed spectrum.
 - In addition: if the LSP is higgsino: Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

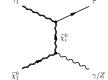
- Low fine-tuning $\Rightarrow \mu = \mathcal{O}(m_Z)$
- Bino LSP: Overabundance of DM
 - Need balance between early universe production and decay
 - One compelling option is $\tilde{\tau}$ Co-annihilation. For this to contribute: Early universe density of and $\tilde{\chi}_1^0$ similar \Rightarrow Compressed spectrum.

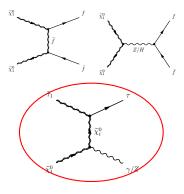




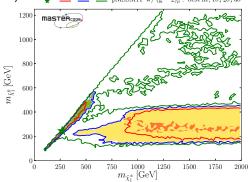
- Higgsino or Wino LSP:
 - If the LSP is Higgsino or a Wino, several other bosinos must be close to the LSP.
 - ⇒ Compressed spectrum.
 - In addition: if the LSP is higgsino: Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$


- Low fine-tuning $\Rightarrow \mu = \mathcal{O}(m_Z)$
- Bino LSP: Overabundance of DM
 - universe production and decay.
 - One compelling option is $\tilde{\tau}$ Co-annihilation. For this to contribute: Early universe density o $\tilde{\tau}$ and $\tilde{\chi}_1^0$ similar \Rightarrow Compressed spectrum

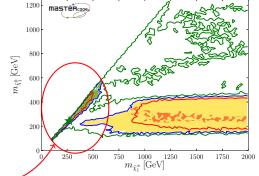


- Higgsino or Wino LSP:
 - If the LSP is Higgsino or a Wino, several other bosinos must be close to the LSP.
 - ⇒ Compressed spectrum.
 - In addition: if the LSP is higgsino: Natural SUSY:
 - $m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta m_{H_d}^2}{1 \tan^2 \beta} 2 |\mu|^2$
 - Low fine-tuning $\Rightarrow \mu = \mathcal{O}(m_Z)$
- Bino LSP: Overabundance of DM.
 - Need balance between early universe production and decay.
 - One compelling option is $\tilde{\tau}$ Co-annihilation. For this to contribute: Early universe density of $\tilde{\tau}$ and $\tilde{\chi}_1^0$ similar \Rightarrow Compressed spectrum.



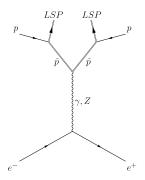
- Higgsino or Wino LSP:
 - If the LSP is Higgsino or a Wino, several other bosinos must be close to the LSP.
 - ⇒ Compressed spectrum.
 - In addition: if the LSP is higgsino: Natural SUSY:
 - Natural SUSY: • $m_Z^2 = 2 \frac{m_{H_U}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$
 - Low fine-tuning $\Rightarrow \mu = \mathcal{O}(m_Z)$
- Bino LSP: Overabundance of DM.
 - Need balance between early universe production and decay.
 - One compelling option is $\tilde{\tau}$ Co-annihilation. For this to contribute: Early universe density of $\tilde{\tau}$ and $\tilde{\chi}_1^0$ similar \Rightarrow Compressed spectrum.

Why compressed spectra? Global fits


pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/precision observables (arXiv:1710.11091):

$$M_{{ ilde \chi}_1^\pm}$$
 - $M_{{ ilde \chi}_1^0}$ plane

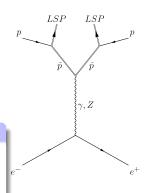
Why compressed spectra? Global fits


Low $\Delta(M)$!

$$M_{{ ilde \chi}_1^\pm}$$
 - $M_{{ ilde \chi}_1^0}$ plane

SUSY@ILC: Loop-hole free searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP, and it must have 100 % BR to it's SM-partner and the LSP.

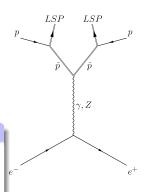


SUSY@ILC: Loop-hole free searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP, and it must have 100 % BR to it's SM-partner and the LSP.

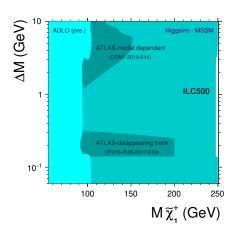
So, at ILC:

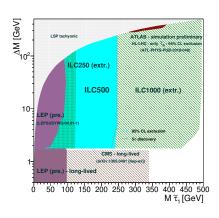
- Model independent exclusion/ discovery reach in M_{NLSP} – M_{LSP} plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a few plots
- No fine-print!



SUSY@ILC: Loop-hole free searches

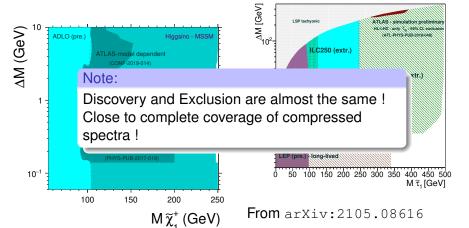
- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP, and it must have 100 % BR to it's SM-partner and the LSP.


So, at ILC:


- Model independent exclusion/ discovery reach in M_{NLSP} – M_{LSP} plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a few plots
- No fine-print!

ILC projection for Higgsino or $\tilde{\tau}$ NLSP

From arXiv:2002.01239

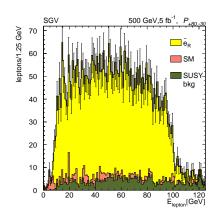


From arXiv:2105.08616

ILC projection for Higgsino or $\tilde{\tau}$ NLSP

From arXiv:2002.01239

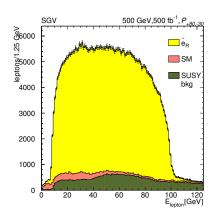
ILD fast detector simulation studies: Selectrons in a co-annihilation model ($_{\text{EPJC}}$ 76,183 (2016)), after:


- \bullet 5 fb⁻¹ \approx 1 week
- and
 - 500 fb⁻¹ \approx 2 years.

ILD fast detector simulation studies: Selectrons in a co-annihilation model ($_{\text{EPJC 76,183 (2016)}}$), after:

• 5 fb⁻¹ \approx 1 week

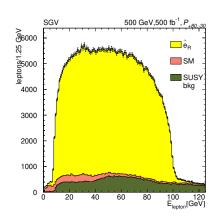
and


• 500 fb⁻¹ \approx 2 years.

ILD fast detector simulation studies: Selectrons in a co-annihilation model ($_{\text{EPJC}}$ 76,183 (2016)), after:

 \bullet 5 fb⁻¹ \approx 1 week and

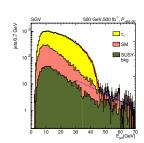
• 500 fb $^{-1} \approx$ 2 years.

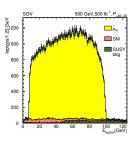


ILD fast detector simulation studies: Selectrons in a co-annihilation model ($_{\text{EPJC}}$ 76,183 (2016)), after:

• 5 fb⁻¹ \approx 1 week

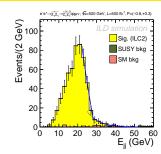
and

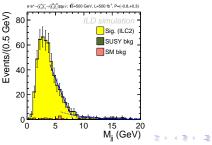

• 500 fb⁻¹ \approx 2 years.



ILD detector simulation studies:

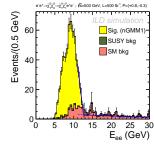
- Typical slepton signal ($\tilde{\tau}$ and $\tilde{\mu}$), in a co-annihilation model (FastSim). (EPJC 76,183 (2016))
- Typical chargino signal...
- ... and typical neutralino signal, higgsino-LSP model, with moderate ΔM (FullSim)
- Typical chargino/neutralino signal, higgsino-LSP model, with very low ΔM (Fast/FullSim).


(EPJC 73,2660 (2013))



ILD detector simulation studies:

- Typical slepton signal ($\tilde{\tau}$ and $\tilde{\mu}$), in a co-annihilation model (FastSim). (EPJC 76,183 (2016))
- Typical chargino signal...
- ... and typical neutralino signal, higgsino-LSP model, with moderate ΔM (FullSim) $\binom{\text{Phys Rev D 101,095026 (2020)}}{}$
- Typical chargino/neutralino signal, higgsino-LSP model, with very low △M (Fast/FullSim).

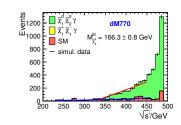


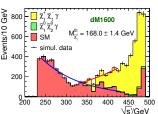
ILD detector simulation studies:

- Typical slepton signal ($\tilde{\tau}$ and $\tilde{\mu}$), in a co-annihilation model (FastSim). (EPJC 76,183 (2016))
- Typical chargino signal...
- ... and typical neutralino signal, higgsino-LSP model, with moderate ΔM (FullSim)

(Phys Rev D 101,095026 (2020))
Typical chargino/neutra

 Typical chargino/neutralino signal, higgsino-LSP model, with very low ΔM (Fast/FullSim).

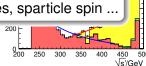




ILD detector simulation studies:

- Typical slepton signal ($\tilde{\tau}$ and $\tilde{\mu}$), in a co-annihilation model (FastSim). (EPJC 76,183 (2016))
- Typical chargino signal...
- ... and typical neutralino signal, higgsino-LSP model, with moderate ΔM (FullSim) (Phys Rev D 101,095026 (2020))
- Typical chargino/neutralino signal, higgsino-LSP model, with very low ΔM (Fast/FullSim).

```
(EPJC 73,2660 (2013))
```

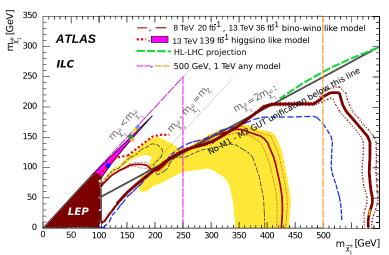


ILD detector simulation studies:

- Typical slepton signal ($\tilde{\tau}$ and $\tilde{\mu}$), in a co-annihilation model (FastSim). (EPJC
- Typical chargin In all cases:
- ... and typical r signal, higgsing with moderate (Phys Rev D 101,0950
- SUSY masses to sub-percent
- Cross-sections to few percent
- Also: Branching fractions, mixing angles, sparticle spin ...
- Typical chargino/neutralino signal, higgsino-LSP model, with very low ΔM (Fast/FullSim).

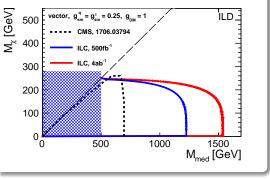
(EPJC 73,2660 (2013))

66.3 ± 0.8 GeV

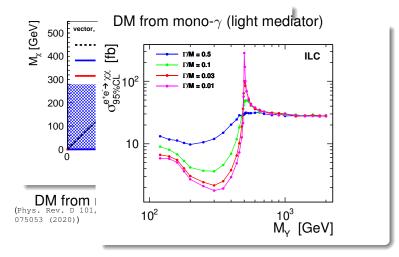

√s'/GeV

simul data

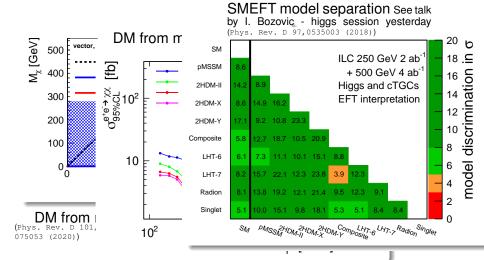
300

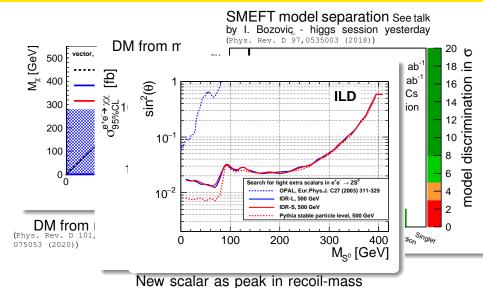

600 400

SUSY bosinos - All-in-one


ATLAS Eur Phys J C 78,995 (2018), Phys Rev D 101,052002 (2020), arXix:2106.01676;

ATLAS HL-LHC ATL-PHYS-PUB-2018-048; ILC arXiv: 2002.01239; LEP LEP LEPSUSYWG




 $\underset{\text{(Phys. Rev. D 101,}}{\mathsf{DM}} \underset{\text{(Phys. Rev. D 101,}}{\mathsf{mono-}} \gamma \text{ (EFT)}$

(arXiv:2005.06265)

Conclusions

- Sometimes, the capabilities for the direct discovery of new particles at the ILC exceed those of the HL-LHC, since ILC provides
 - Well-defined initial state
 - Clean environment without QCD backgrounds
 - Extendability in energy and polarised beams
 - Detectors factors more precise, hermetic, and with no need for triggering
- Many ILC HL-LHC synergies from energy-reach vs. sensitivity.
 - SUSY: High mass vs. Low $\Delta(M)$. If SUSY is reachable at ILC, it means 5 σ discovery, and precision measurements.
 - Might be just what is needed for HL-LHC to transform a 3 σ excess to a discovery of a High mass state!
 - Dark matter, FIPS, ...: Leptophilic vs. Leptophobic Higher mass and higher coupling vs. lower mass and lower coupling.

Conclusions

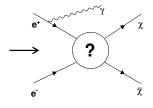
- Sometimes, the capabilities for the direct discovery of new particles at the ILC exceed those of the HL-LHC, since ILC provides
 - Well-defined initial state
 - Clean environment without QCD backgrounds
 - Extendability in energy and polarised beams
 - Detectors factors more precise, hermetic, and with no need for triggering
- Many ILC HL-LHC synergies from energy-reach vs. sensitivity.
 - SUSY: High mass vs. Low $\Delta(M)$. If SUSY is reachable at ILC, it means 5 σ discovery, and precision measurements. Might be just what is needed for HL-LHC to transform a 3 σ excess to a discovery of a High mass state!
 - Dark matter, FIPS, ...: Leptophilic vs. Leptophobic Higher mass and higher coupling vs. lower mass and lower coupling.

More material:

- ILC snowmass whitepaper
- ILC input to the european strategy update
- The Potential of the ILC for Discovering New Particles

and references therein ...

Thank You!



Backup

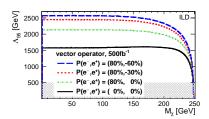
BACKUP SLIDES

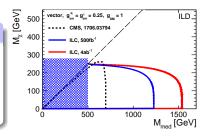
Only WIMPs

- What if this is the only accessible NP?
- Search for direct WIMP pair-production at collider: Need to make the invisible visible:
 - Require initial state radiation which will recoil against "nothing" ⇒ Mono-X search.
 - At ILC: $e^+e^- \rightarrow \chi \chi \gamma$, ie. X is a γ

- ILC simulation studies: arXiv:1206.6639v1, A. Chaus, Thesis, M. Habermehl, Thesis,in preparation.
- Model-independent Effective operator approach to "?"
 - Analyse as an effective four-point interaction. Strength = Λ .
 - Allowable if direct observation the mediator is beyond reach. Mostly true at ILC, but not at LHC!
 - Write down all possible Lorentz-structures of the operators.
 - Exclusion regions in M_{χ}/Λ plane, for each operator.

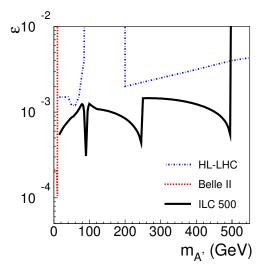
ILC and LHC exclusion


- Examples:
 - Vector operator ("spin independent"), Note how
- useful beam-polarisation is!


 At LHC, EffOp can't be used

 ⇒ use "simplified models"
- Need to translate Λ to M_{med} : $M_{med} = \sqrt{g_{SM}g_{DM}}\Lambda$

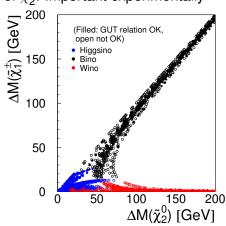
ILC/LHC complementarity


- LHC: coupling to hadrons,
 ILC: coupling to leptons.
- LHC has best M_{χ} reach, ILC best M_{med} reach

Dark photons

(Theory level estimate - FullSim in the works...)

Aspects of the spectrum

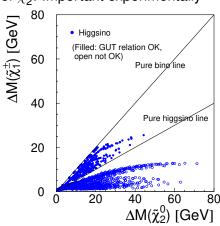

Another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. that of $\tilde{\chi}_2^0$: Important experimentally

• Three regions:

• Bino: Both the same, but can be anything.

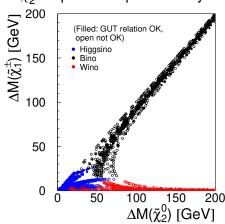
 $\bullet \ \, \text{Wino:} \ \, \Delta_{\widetilde{\chi}_1^\pm} \ \, \text{small, while} \ \, \Delta_{\widetilde{\chi}_2^0} \\ \text{can be anything.}$

- Higgsino: Both often small
- But note, seldom on the "Higgsino line", ie. when the chargino is exactly in the middle of mass-gap between the first and second neutraling



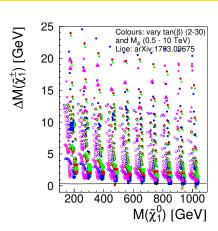
Aspects of the spectrum

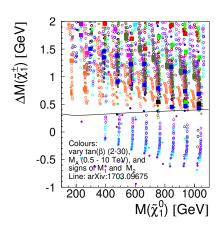
Another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. that of $\tilde{\chi}_2^0$: Important experimentally


- Three regions:
 - Bino: Both the same, but can be anything.
 - Wino: $\Delta_{\widetilde{\chi}_1^\pm}$ small, while $\Delta_{\widetilde{\chi}_2^0}$ can be anything.
 - Higgsino: Both often small
- But note, seldom on the "Higgsino line", ie. when the chargino is exactly in the middle of mass-gap between the first and second neutralino.

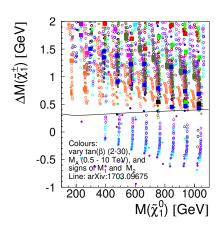
Aspects of the spectrum

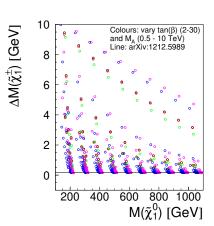
Another angle: $\Delta(M)$ for $\tilde{\chi}_1^{\pm}$ vs. that of $\tilde{\chi}_2^0$: Important experimentally

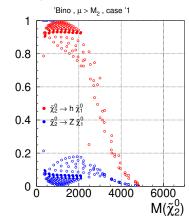

- Three regions:
 - Bino: Both the same, but can be anything.
 - $\bullet \ \, \text{Wino:} \ \, \Delta_{\widetilde{\chi}_1^\pm} \ \, \text{small, while} \ \, \Delta_{\widetilde{\chi}_2^0} \\ \text{can be anything.}$
 - Higgsino: Both often small
- But note, seldom on the "Higgsino line", ie. when the chargino is exactly in the middle of mass-gap between the first and second neutralino.



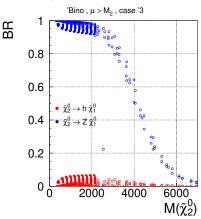
Higgsino LSP.


- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason: 1703.09675 considers *only SM* effects on the mass-splitting, ie. that M_1 and $M_2 >> \mu$
- Same for Wino LSP.


- Higgsino LSP.
- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason: 1703.09675 considers *only SM* effects on the mass-splitting, ie. that M_1 and $M_2 >> \mu$
- Same for Wino LSP.

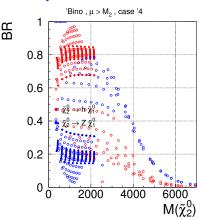

- Higgsino LSP.
- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason: 1703.09675 considers *only SM* effects on the mass-splitting, ie. that M_1 and $M_2 >> \mu$
- Same for Wino LSP.

- Higgsino LSP.
- Zoom in. The line is the absolute limit mentioned in the BB.
- Reason: 1703.09675 considers *only SM* effects on the mass-splitting, ie. that M_1 and $M_2 >> \mu$
- Same for Wino LSP.

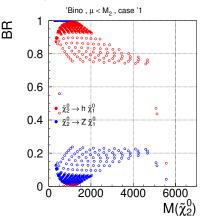


- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- ullet or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots not the union!

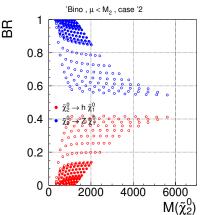
- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- \bullet or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!

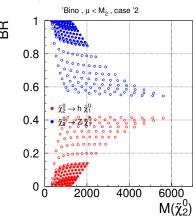


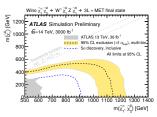
- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- \bullet or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots not the union!

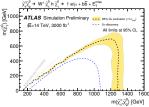


- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- ullet or $\mu < M_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!




- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- $\bullet \ \, \text{or} \, \, \mu < \textit{M}_{\textrm{2}}$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!


- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- $\bullet \ \, \text{or} \, \, \mu < \textit{M}_{\textrm{2}}$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!



- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- ullet or $\mu < \emph{M}_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots not the union!

- Vary relative signs of μ, M₁, and M₂
- For $\mu > M_2$
- ullet or $\mu < \emph{M}_2$
- Conclusion: Whether the Z or the H decay-mode of $\tilde{\chi}_2^0$ dominates is pure speculation and
- The exclusion-region is the intersection of the two plots, not the union!

