

Searches for supersymmetry in hadronic (and photonic) final states with the CMS experiment

Ankush Reddy Kanuganti (Baylor University) On behalf of the CMS collaboration

ICHEP 2022, Bologna, 6-13 July 2022

Motivation and challenges

- Supersymmetry (SUSY) proposes super partners with a spin difference of ½
- SUSY can answer many questions about the hierarchy problem and the lightest supersymmetric candidate could be DM candidate.
- R-parity conserving SUSY with p_T^{miss} searches:
 - Strong
- 🚽 🗕 In this talk
- Searches in hadronic final states provide good sensitivities to strong SUSY particle production (gluinos, squarks)
- While the **electroweak SUSY** are critical for testing natural SUSY and extremely challenging due to their <u>smaller cross-sections</u>.

Ankush Kanuganti

Strong SUSY searches

Ankush Kanuganti

Inclusive SUSY searches in hadronic final states

- The analysis using the M_{T2} variable established a baseline for the Run2 analyses. Gluino masses up to 2250 GeV and 1250 GeV for squark masses are excluded.
- Better reduction of background using the M_{T2} variable
- In compliment, other analysis (SUS-19-006) looks for direct production of gluinos and squarks using N_{jets}, N_{bjets}, HT and MHT. Gluino masses up to 2310 GeV and Sbottom up to 1230 GeV are excluded.

CMS NEW 1 lep Δφ search CMS-SUS-21-007

- SUSY search with 1 lepton, jets and p_{T}^{miss} in the final state.
- Signal regions are classified based on the b-tag requirement.
- Signal-rich region: Defined by large $\Delta \varphi$ and high nJet
- low ∆m (Gluino, LSP) ⇒ Resolved top → tagged using <u>Resolved top tagger</u>
- high Δm (Gluino, LSP) \Rightarrow Merged top \rightarrow tagged using <u>DeepAK8 top tagger</u>

• Better suppression of backgrounds while still achieving high signal sensitivity.

Ankush Kanuganti

- Multi-b analysis: m(\tilde{g}) < 2120 GeV & m($\tilde{\chi}_1^0$) < 1270 GeV are excluded. •
 - Improvement of about 320 (170) GeV on the gluino (neutralino) masses
- Ob analysis: m(\tilde{g}) < 2280 GeV & m($\tilde{\chi}_1^0$) < 1220 GeV are excluded.
 - Improvement of about 380 (270) GeV on the gluino (neutralino) masses

1000

800 600

400

Electroweak SUSY searches

CMS

$WX + p_T^{miss}search$

arxiv 2205.09597

Targets electroweakino pair production in high p_T^{miss} regions.

- Baseline selections includes:
 - Lepton veto
 - High $p_T^{miss} \text{and} \ \text{H}_{\text{T}}$
 - Use of DeepAK8 boson taggers to tag each of the W/Z/H decays
- b-veto signal region (TChiWW + TChiWZ):
 - ≥ 2 AK8 jets with WZ-mass (65-105 GeV), use of dedicated neural network taggers to tag W/Z bosonic decays.
- b-tag signal region (TChiWZ + TChiWH):
 - The signal region with highest sensitivity is WHTag SR
 - WHTag ŠR: ≥ 1 AK8 jets with WZ-mass (65-105 GeV),
 ≥ 1 AK8 jets with ZH-mass (75-140 GeV),
 use of Z / H neural network taggers.
- All SRs are binned in p_T^{miss} .

Ankush Kanuganti

CMS

simulation.

WX + p_T^{miss}search strategy

For b-veto SR, predictions for the 0 and 1-resonant backgrounds are made using the transfer factor method as shown and the 2 resonant background is taken directly from

arxiv 2205.09597

For the b-tag SR, the top background is predicted using the

1-lepton control region

 $N_{0\ell,\mathrm{res}}^{\mathrm{data}} = \left(N_{0\ell,\mathrm{res}}^{\mathrm{MC}} / N_{1\ell,all}^{\mathrm{MC}} \right) \times N_{1\ell}^{\mathrm{data}}$

The non-resonant background is predicted using anti-tag data control regions.

$$N_{0-\text{res}}^{\text{pred},0\ell} = \mathcal{R}_{p/f}(N_{!\text{tag}}^{\text{data},0\ell} - N_{!\text{tag},1-\text{res}}^{\text{pred},0\ell} - N_{!\text{tag},\text{rare}}^{\text{MC},0\ell})$$

$$pass/fail \ ratio$$

$$pass = tag \ regions$$

$$fail - anti-tag \ regions$$

WX + p_T^{miss}search results

arxiv 2205.09597 CMS-SUS-21-002

- It's <u>challenging to probe the hadronic phase-space</u>, but the deep NN taggers and robust SR selections bolstered to exclude higher NLSP masses than the counter leptonic searches.
- A more realistic interpretation for the Wino bino doublet scenario where $\chi_2{}^0 \to Z/H + \chi_1{}^0$
- The search is sensitive to a large class of electroweakino models (TChiWW, TChiWZ and TChiWH)
- This is the <u>first time</u> that we exclude a significant phase space (300 -650 GeV) of <u>higgsino - bino scenarios</u> of MSSM in CMS analyses.

CMS 137 fb⁻¹ (13 TeV) 600 $\mathsf{m}(\widetilde{\chi}^0_1)$ [GeV] Higgsino-like $\tilde{\chi}_{a}^{\pm}, \tilde{\chi}_{a}^{0}, \tilde{\chi}_{a}^{0}$ section [pb] $\rightarrow W^{\pm} \widetilde{\chi}^{0}_{,}, \widetilde{\chi}^{0}_{,} \rightarrow Z \widetilde{\chi}^{0}_{,}, \widetilde{\chi}^{0}_{,} \rightarrow H \widetilde{\chi}^{0}_{,}$ NLO+NLL Exclusion 500 = Observed ± 1 σ_{theor} Expected $\pm 1 \sigma_{\text{experiment}}$ 400 CL upper limit on 300 200 100 95% 10⁻³ 300 400 500 600 700 800 900 1000 1100 $m(\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{2}^{0})$ [GeV]

$HH + p_T^{miss}search$

JHEP **2022,** 14 (2022)

CMS-SUS-20-004

- This search targets simplified SUSY Model
 - $\cdot ~ \tilde{\chi}_1^0$ LSP, $\tilde{\chi}_2^0 / \tilde{\chi}_3^0$ NLSP
 - \cdot Only $\tilde{\chi}^0_2/\tilde{\chi}^0_3$ (nearlymass-degenerate)may decay to LSP
- Final states are HH + p_T^{miss} classified broadly into:
 - Resolved: 2 b-jets from H are reconstructed
 - Boosted: The b-jets from H are reconstructed by a fat jet
- GMSB scenario assuming: \tilde{G} (LSP), $\tilde{\chi}_1^0$ (NLSP) \rightarrow H \tilde{G} (100%)
- T5HH model gains edge over high H production from gluino cascades.

Ankush Kanuganti

HH + p_T^{miss} results

- In all of the SR, the predictions are consistent with observed except bin 11 which has a 3.2 σ excess (1.9 σ global)
- Excludes m(g) up to 2330 GeV (T5HH)
- Excludes $\tilde{\chi}_1^0$ from [175,1025] GeV for Higgsino model w/ \tilde{G} (TChiHH-GMSB)

JHEP 2022, 14 (2022)

CMS-SUS-20-004

Ankush Kanuganti

ICHEP - SUSY in hadronic & photonic final states

1200

TChiHH-G

800

 $\pm 1 \sigma_{\text{experiment}}$

1000

section [fb] 10^₄

SS 10³

10²

10

10

10

200

CMS

Theory $(\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{2}^{0}+\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{\pm}+\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm}+\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\pm})$

600

Theory (X1X2)

Summary & Outlook

- A wide variety of SUSY searches have been performed by CMS in hadronic final states.
- This talk mainly presented three recent searches from CMS.
 - WX+ p_T^{miss} analysis is sensitive to wide range of pair production of electroweakino models and also excludes a significant range of higgsino masses as well.
 - Complement searches in leptonic final states, in particular at high NSLP masses
 - + HH+ p_T^{miss} search significantly pushes the gluino mass boundary up to 2330 GeV
 - The new 1 lep $\Delta \phi$ analysis also extends both the gluino mass upto 2280 GeV and the $\tilde{\chi}_1^0$ mass up to 1220 GeV.
- No signs of BSM physics yet but significant range of phase-space is excluded.
- In the future Run3 analyses, use of new neural network taggers and ML based analysis techniques would yield much exciting results.

Snowmass 2022

Backup

CMS

- $M_{T2} = \min_{\vec{p}_{T}^{X(1)} + \vec{p}_{T}^{X(2)} = \vec{p}_{T}^{miss}} \left[\max\left(M_{T}^{(1)}, M_{T}^{(2)}\right) \right]$
- Better background suppression using M_{T2} variable.

	2016:				
	$p_{ m T}^{ m miss} > 120{ m GeV}$ and $H_{ m T}^{ m miss} > 120{ m GeV}$, or				
	$H_{\rm T}$ > 300 GeV and $p_{\rm T}^{\rm miss}$ > 110 GeV, or				
	$H_{\rm T} > 900$ GeV, or jet $p_{\rm T} > 450$ GeV				
Trigger	2017 and 2018:				
ingger	$p_{ m T}^{ m miss} > 120{ m GeV}$ and $H_{ m T}^{ m miss} > 120{ m GeV}$, or				
	$H_{ m T} > 60{ m GeV}$ and $p_{ m T}^{ m miss} > 120{ m GeV}$ and $H_{ m T}^{ m miss} > 120{ m GeV}$, or				
	$H_{ m T} > 500{ m GeV}$ and $p_{ m T}^{ m miss} > 100{ m GeV}$ and $H_{ m T}^{ m miss} > 100{ m GeV}$, or				
	$H_{\rm T} > 800{ m GeV}$ and $p_{ m T}^{ m miss} > 75{ m GeV}$ and $H_{ m T}^{ m miss} > 75{ m GeV}$, or				
	$H_{\rm T} > 1050$ GeV, or jet $p_{\rm T} > 500$ GeV				
Jet selection	$R = 0.4, p_{\mathrm{T}} > 30 \mathrm{GeV}, \eta < 2.4$				
b-tagged jet selection	$p_{ m T}>20{ m GeV}, \eta <2.4$ and b tag				
H_{T}	$H_{\rm T}>250{ m GeV}$				
	$p_{ m T}^{ m miss}$ > 250 GeV for $H_{ m T}$ < 1200 GeV or $N_{ m j}$ = 1, else $p_{ m T}^{ m miss}$ > 30 GeV				
$p_{\mathrm{T}}^{\mathrm{miss}}$	$\Delta \phi_{\min} = \Delta \phi \left(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, j_{1,2,3,4} ight) > 0.3$				
	$ert ec{p}_{\mathrm{T}}^{\mathrm{miss}} - ec{H}_{\mathrm{T}}^{\mathrm{miss}} ert / p_{\mathrm{T}}^{\mathrm{miss}} < 0.5$				
	Inclusive M_{T2} search:				
	$M_{ m T2} > 200 { m GeV}$ for $H_{ m T} < 1500 { m GeV}$, else $M_{ m T2} > 400 { m GeV}$				
M_{T2} (if $N_{\mathrm{j}} \geq 2$)	Disappearing tracks search:				
	$M_{\rm T2}>200{ m GeV}$				
$p_{\rm sum}^{\rm sum}$ cone (isolation)	Veto eor μ : $\Delta R = \min(0.2, \max(10 \text{ GeV}/p_{\text{T}}^{\text{lep}}, 0.05))$				
	Veto track: $\Delta R = 0.3$				
Veto electron	$p_{ m T} > 10{ m GeV}, \eta < 2.4, p_{ m T}^{ m sum} < 0.1 p_{ m T}^{ m lep}$				
Veto electron track	$p_{ m T} > 5{ m GeV}, \eta < 2.4, M_{ m T} < 100{ m GeV}, p_{ m T}^{ m sum} < 0.2 p_{ m T}^{ m lep}$				
Veto muon	$p_{ m T} > 10{ m GeV}, \eta < 2.4, p_{ m T}^{ m sum} < 0.2 p_{ m T}^{ m lep}$				
Veto muon track	$p_{ m T} > 5{ m GeV}, \eta < 2.4, M_{ m T} < 100{ m GeV}, p_{ m T}^{ m sum} < 0.2 p_{ m T}^{ m lep}$				
Veto track	$p_{ m T} > 10 { m GeV}, \eta < 2.4, M_{ m T} < 100 { m GeV}, p_{ m T}^{ m sum} < 0.1 p_{ m T}^{ m track}$				

CMS-SUS-19-005

Ankush Kanuganti

NEW CMS lep $\Delta \varphi$ search backup 1

Multi-b analysis (left); 0-b analysis (middle, right)

Overview of SR definitions

٠

- Major background is estimated using the ABCD method. ٠ $\frac{N_{\text{data}}^{\text{SB,SR}} - N_{\text{Pred,QCD}}^{\text{SB,SR}}}{N^{\text{SB,CR}} - N^{\text{SB,CR}}}$ $R_{\text{data}}^{\text{CS}}(n_{\text{jet}} \in [4, 5], n_{\text{b}} \text{ as in MB}) =$ $\overline{N_{:}^{\text{SB,CR}}}$ –
- The prediction is done by scaling the low $\Delta \phi$ region by SB ٠ R^{CS} from data and \mathcal{K}_{EW}

$$\kappa_{\rm EW} = \frac{R_{\rm MC,EW}^{\rm CS} \left(n_{\rm jet} \text{ as in MB}\right)}{R_{\rm MC,EW}^{\rm CS} \left(n_{\rm jet} \in [4,5]\right)}$$

CMS-SUS-21-007

Table 1: Baseline event selection.

One good lepton with $p_{\rm T} > 25 \,{\rm GeV}$ No additional veto lepton with $p_T > 10 \text{ GeV}$ No isolated track with $p_T > 5$ GeV with $m_{T2} < 60$ (80) GeV for hadronic (leptonic) tracks $L_{\rm T} > 250 \, {\rm GeV}$ $H_{\rm T} > 500 \, {\rm GeV}$ Number of AK4 jets $n_{jet} \ge 3$ Subleading jet with $p_{\rm T} > 80 \,{\rm GeV}$ $n_{\rm b} \ge 1$ and $n_{\rm t} \ge 1$ (multi-b analysis) or $n_{\rm b} = 0$ (zero-b analysis)

Multi-b analysis systematic uncertainties ٠

** . • •	Total background
Uncertainty source	median [min, max] [%]
Jet energy corrections	3.8 [0.2, 36.3]
QCD multijet	3.8 [0.8, 71.0]
ttV cross sections	2.8 [0.1, 22.6]
ISR modeling	2.3 [0.4, 20.3]
Pileup modeling	2.3 [0.1, 18.6]
Dileptonic correction	2.2 [0.4, 12.3]
$t\bar{t}$ cross section	1.6 [0.1, 23.7]
W+jets polarization	0.6 [0.1, 4.4]
b tagging (efficiency)	0.6 [0.1, 5.7]
W+jets cross section	0.4 [0.1, 7.7]
b tagging (misidentification)	0.3 [0.1, 8.4]
Lepton efficiency	0.2 [0.1, 1.6]

Ankush Kanuganti

b-veto signal region

Systematic uncertainties

Region	Requirements			le moto				1- 1	4.0.0	
h voto SP	≥ 1 V-tagged jet	Source	0- and 1	-res bkg.	Rare	Signal	Top	0-res	Rare	Signal
D-Veto SK	≥ 1 W-tagged jet >2 V- or W-tagged jets	Integr. luminosity			1.6	1.6			1.6	1.6
h wata 0 tag CP	0 V-tagged jets	CR data size MC sample size	6–71 8–25	5–50 8–30	14–24	2-5	3–100 2–28	2–35 3–40	<u> </u>	2–5
D-velo 0-lag CK	0 W-tagged jets	$\mu_{\rm R}$ and $\mu_{\rm F}$	1.2	0.4	8	<5	2–10	0.5	11	<5
b-veto 1-tag CR	1 V-tagged jet	b-tag correction	<1	<1	2-3 <1	2–3 1	1	<3	2–3 <3	2–3 2–3
	0 other W-tagged jets	bb-tag correction			—	—	—	4	2–7	4
		W-tag correction	12-28	6–22 2 10	11-15	15	1	9	7	9
 b-tag signal region 		W-tag nonclosure	7–13 3–48	2–10 3–48	1-4			_	_	_
	-	V-tag nonclosure	1–27							

Fast simulation

	Wboso	n candidate	Higgs boson candidate			
	Wtagged	not Wtagged	$b\overline{b}$ tagged	not $b\overline{b}$ tagged		
WH SR	≥ 1	—	≥ 1	—		
WSR	≥ 1	—	0	—		
H SR	0	—	≥ 1	—		
WH antitag CR	0	≥ 1	0	≥ 1		
Wantitag CR	0	≥ 1	0	0		
H antitag CR	0	0	0	≥ 1		

WX + p_T^{miss} search backup

- Mainly classified into b-Veto SR (top) and b-Tag SR (bottom)
- The common baseline selections include: $\geq 2 \text{ AK8 jets}$, $p_T^{miss} \geq 200 \text{ GeV}$, no leptons.
- The b-Veto SR targets W/Z → qq (q ≠ b) decays, additionally requires:
 - > AK8 jets mass window for W/Z: 65-105 GeV
 - Deep AK8 taggers used: deep-W tagger and deep W massdecorrelated (WMD) tagger.
 - > The WMD tagger, agnostic to jet mass, captures hadronic decays of both W and Z and is calibrated with $W \rightarrow qq$ decays.
- The b-Tag SR targets $Z/H \rightarrow$ bb decays, additionally requires:
 - > AK8 jets mass window for Z/H: 75-140 GeV
 - Deep AK8 taggers used: deep-W tagger and deep-bb tagger.
 - > Taking advantage of the $Z/H \rightarrow$ bb branching ratio, we optimize this SR using deep-bb tagger.

Mass of the deep-WMD tagged jet in b-Veto SR

Mass of the bb-tagged jet in b-Tag SR19

Ankush Kanuganti

CMS

WX + p_T^{miss} search backup

- No significant deviations from SM predictions are observed.
- A more realistic interpretation for the Wino bino doublet scenario where $\chi_2^0 \rightarrow Z/H + \chi_1^0$
- This is the <u>first time</u> that we exclude a significant phase space of <u>higgsino - bino scenarios</u> of MSSM in CMS analyses.
- These mass exclusions significantly improve on those achieved by searches using leptonic probes of SUSY for high NLSP masses $pp \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^*$ August 2021 **CMS** Preliminary 137 fb⁻¹ (13 TeV)

Resolved signal regions

Bin	$\Delta R_{\rm max}$	$N_{\rm b}$	$p_{\rm T}^{\rm miss}$ [GeV]	К	$N_{ m SR}^{ m pred}$	$N_{ m SR}^{ m fit}$	$N_{ m SR}^{ m obs}$
1			150-200	$1.09 \pm 0.04 \pm 0.02$	161^{+14}_{-13}	$149.7^{+8.9}_{-8.5}$	138
2		2	200-300	$0.92 \pm 0.04 \pm 0.02$	$90.4\substack{+9.7 \\ -9.0}$	$91.5\substack{+6.9 \\ -6.5}$	91
3		5	300-400	$0.94 \pm 0.09 \pm 0.01$	$11.5^{+3.4}_{-2.7}$	$12.8^{+2.6}_{-2.2}$	14
4	1.1–2.2		>400	$0.98^{+0.19}_{-0.16}\pm0.02$	$2.8\substack{+2.3\\-1.4}$	$2.8\substack{+1.4\\-1.0}$	3
5			150-200	$1.13 \pm 0.09 \pm 0.08$	$53.5\substack{+8.8 \\ -7.8}$	$54.1\substack{+5.6 \\ -5.2}$	54
6		4	200-300	$0.96 \pm 0.07 \pm 0.07$	$28.3^{+5.6}_{-4.8}$	$33.2_{-3.9}^{+4.2}$	38
7		4	300-400	$0.89^{+0.16}_{-0.15}\pm 0.05$	$2.6^{+1.5}_{-1.1}$	$3.2^{+1.3}_{-1.0}$	4
8			>400	$0.92^{+0.27}_{-0.22}\pm0.07$	$2.6\substack{+2.4 \\ -1.4}$	$1.27\substack{+0.98 \\ -0.63}$	0
9			150-200	$1.05^{+0.18}_{-0.15}\pm0.12$	$5.1^{+1.6}_{-1.3}$	$5.9^{+1.4}_{-1.2}$	8
10		3	200-300	$1.04^{+0.14}_{-0.13}\pm 0.11$	$2.17\substack{+0.79 \\ -0.60}$	$2.31\substack{+0.73 \\ -0.57}$	2
11		5	300-400	$0.72^{+0.33}_{-0.22}\pm 0.08$	$0.06\substack{+0.11 \\ -0.04}$	$0.72\substack{+0.53 \\ -0.33}$	4
12	<1.1		>400	$1.24^{+0.67}_{-0.45}\pm0.10$	$0.89\substack{+1.42 \\ -0.60}$	$0.52\substack{+0.65 \\ -0.35}$	0
13			150-200	$1.26^{+0.21}_{-0.20}\pm0.23$	$2.68^{+1.06}_{-0.79}$	$2.58\substack{+0.85 \\ -0.67}$	1
14		4	200-300	$1.21^{+0.22}_{-0.21}\pm 0.22$	$1.26\substack{+0.62\\-0.44}$	$1.62\substack{+0.65 \\ -0.48}$	3
15		4	300-400	$2.35^{+0.88}_{-0.72}\pm0.34$	$0.42\substack{+0.61 \\ -0.27}$	$1.16\substack{+0.87 \\ -0.55}$	1
16			>400	$0.94^{+0.53}_{-0.36}\pm0.13$	$0.67\substack{+1.10 \\ -0.46}$	$0.78\substack{+0.76 \\ -0.43}$	1

• Boosted signal regions

Bin	$N_{\rm H}$	$p_{\rm T}^{\rm miss}$ [GeV]	$N_{ m SR,\ tot}^{ m pred}$	$f_{\rm pTmiss}$	$N_{ m SR}^{ m pred}$	$N_{ m SR}^{ m fit}$	$N_{ m SR}^{ m obs}$
17		300-500		0.789 ± 0.030	$33.6^{+6.1}_{-5.2}$	$37.0^{+4.2}_{-4.0}$	42
18	1	500-700	42.6 ± 4.2	0.172 ± 0.028	$7.3^{+2.0}_{-1.6}$	$7.2^{+1.5}_{-1.3}$	6
19		>700		0.039 ± 0.014	$1.65\substack{+1.04 \\ -0.66}$	$1.50\substack{+0.75 \\ -0.53}$	1
20		300–500		0.789 ± 0.030	$4.0^{+1.5}_{-1.1}$	$4.0\substack{+1.2\\-1.0}$	4
21	2	500-700	5.1 ± 1.0	0.172 ± 0.028	$0.88\substack{+0.40\\-0.28}$	$0.74\substack{+0.29\\-0.21}$	0
22		>700		0.039 ± 0.014	$0.20^{+0.21}_{-0.10}$	$0.14\substack{+0.13 \\ -0.07}$	0

• Systematic uncertainties

Sourco	Relative uncertainty [%			
Source	Resolved	Boosted		
MC sample size	0–18	1–15		
ISR modeling	0–2	0–18		
Renormalization and factorization scales $\mu_{\rm R}$ and $\mu_{\rm F}$	0–2	0–7		
Pileup corrections	0–3	0–9		
Integrated luminosity]	.6		
Jet energy scale	0–7	0–12		
Jet energy resolution	0–7	0–7		
Isolated track veto	2–9	1–8		
Trigger efficiency	1–12	0–4		
$m_{\rm J}$ resolution	—	0–9		
b tagging efficiency	2–6			
b mistagging	0–1			
bb tagging efficiency	—	6–15		
Uncertainties attributable to the fast	simulation			
Jet quality requirements		1		
$p_{\mathrm{T}}^{\mathrm{miss}}$ modeling	0–14	0–12		
<i>m</i> _J resolution		2–4		
b tagging efficiency	0–1			
b mistagging	0–1			
bb tagging efficiency		0–1		