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Looking for Long-Lived Particles at the LHC

o Charged or neutral long-lived particle (LLP) is produced from an LHC collision, and then travels all the
way through, say, the CMS detector

« Can have a unique signature:
— Large energy loss (through ionization or nuclear interactions)

— Slow-moving (large time-of-flight)

 If mass 2 100 GeV, will be fairly central, but if mass is more like 10’s of GeV, could be more forward




Stage 1: Trap the LLP

e LLP could come to a stop in an absorber made of a movable, dense material
e Could even move absorber to another position to target different LLP mass ranges
e Leave it in the LHC cavern for a few weeks or up to ~a year
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Stage 2: Detect LLP Decay

Stopped LLP could decay to SM + BSM particles,
leaving a calorimeter signature

If stopped particle lifetime was long, decay could occur
significantly after the stopped particle was absorbed

Remove absorber from LHC cavern, then detect decay
in quiet environment

e Fewer sources of background

« Avoids the need for a trigger - can target lower
mass!

Target: long lifetimes (~days or longer), low energy
(3-100 GeV) SM decay products (compressed spectra)



Previous Searches at ATLAS and CMS

« Both CMS and ATLAS have performed several searches for particles that stop in the detectors and
then decay later

« Most recent CMS: 10.1007/JHEP05(2018)127
« Most recent ATLAS: 10.1007/JHEP07(2021)173
« Benchmark model: gluino R-hadrons in split SUSY

« Both experiments set cross section and mass limits for lifetimes between 100 ns and ~days/1 year,
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https://link.springer.com/article/10.10JHEP05(2018)127
https://dx.doi.org/10.1007/JHEP07(2021)173&v=3747cd0f

Benchmark Model and Acceptance

« Benchmark case inspired by split SUSY:
produce a pair of gluinos (g) with long

lifetimes

Best acceptance for
small mass gluinos
when the absorber is
in a forward position

Best acceptance for
large mass gluinos
when the absorber is
in a central position
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Absorption

We then simulate neutral R-hadrons that travel through an approximation of the CMS material
and hit a brass absorber in GEANT4

Choose absorber made of brass because high density, relatively cheap, reusable in/from
(hadronic) calorimeters

Choose 2 x 2 x 2 m absorber

Absorption depends on velocity (# = v/c), mass, and depth
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Total Trapping Efficiency

« Convolve R-hadron angular acceptance with the absorption efficiency to get the total efficiency
times acceptance

« Total trapping efficiency between 0.1 and 1%, depending on particle mass and absorber position
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Detection Setup

1. Take the absorber apart e GEANT4 simulation shows that particles
e Separate the 1 cm x 1 cm x 2m brass rods with energy > 100 MeV escape the rods

2. Submerge rods into liquid argon (LAr), leave e Therefore, SM decay products with

1 cm space between them energy > 3 GeV can easily be detected

3. Apply voltage to each rod and attach by this setup
readout electronics

Electric field
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Cosmic Muon Background

e |f we put this LAr calorimeter detector in
a quiet environment, most relevant
background will be from cosmic rays

e Shielding can reject everything but muons
from cosmic rays

e Cosmic ray muons can mimic the signal

e To reject this cosmic background, will add
a muon veto system with a fast response,
e.g. restive plate chambers (RPCs)

Two layers of RPCs,
above and below LAr

Cosmic ray
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Background Estimation

¢ To estimate background from cosmic muons:

e Take the spectrum of vertical cosmic ray muons at sea
level as an upper limit

¥

Phys.Rev.D 58 (1998) 054001

e Convolve it with the fraction of energy muons can leave
in LAr (from simulation)

* |Integrate the convolved muon spectrum over the

Am
momentum, starting from a threshold of —
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» Expected background = assume RPC efficiency * integral B I R
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In the future, background estimation can also be measured Muon Momentum ( GeVic)
from data with unexposed rods (e.g. from twin detector)


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.58.054001

Sensitivity
 We consider gluinos that decay to a jet and a neutralino: ¢ — g)?o

« Complimentary to ATLAS and CMS, in both mass and lifetime coverage
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Summary: Why new experiment to search for stopped LLPs?

. Striking signature of new physics! Stage 1: Trap
o Unique sensitivity with this new 2
stage detection strategy
o To small mass splitting regime
(~3-100 GeV)
« To lifetimes on the order of days to

years Stage 2: Detect
o Possibility of discovery reach within a J— g

few months of operation / e
. Relatively low cost (~1M CHF) with /. \
opportunities to reuse existing "“‘é};}f\i \\
components (e.g. cryostat) \
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Next Steps

e Prospects in discussion with Physics Beyond Colliders group
« R&D has started at Fermilab (“Fermilab Detector R&D New Initiative”)
e Goal: small-scale demonstrator of the detection strategy

« Optimize electrodes, readout electronics, measure calorimeter
response, study energy threshold

Want to build a new detector? Let us know if you want to get involved!
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