

Search for invisible decays at BESIII

Houbing Jiang (On behalf of the BESIII Collaboration)

Wuhan University

Introduction

- \checkmark The SM still leaves many questions unanswered:
 - The quest for dark matter
 - Matter-antimatter asymmetry
 - • • • •

- ✓ Search for invisible decays is one way to search for dark matter and might provide a window into what may lie beyond SM
- ✓ e⁺e[−] collision experiments have the ability to probe invisible decays, benefiting from a well measured CM energy and a clean environment
- ✓ Topics in this talk:
 - Search for the decay $J/\psi \rightarrow \gamma + \text{invisible}$ Phys. Rev. D 101, 112005(2020)
 - Search for invisible decays of the Λ baryon $\Lambda \rightarrow$ invisible Phys. Rev. D 105, L071101(2022)

BEPCII & BESIII

Beijing Electron Positron Collider II

- Double rings;
- Ecm= 2.0-4.6 GeV (2.0-4.9 GeV since 2019);
- Energy spread: $\Delta E \approx 5 \times 10^{-4}$ GeV;
- Design luminosity @Ecm= 3.77 GeV: $\sim 1 \times 10^{33} cm^{-2}s^{-1}$ Reached in 2016;
- 2009~ today: BESIII physics runs;

Beijing Spectrometer III

Data samples at BESIII

✓ Largest e^+e^- annihilation data sets in $\tau - c$ energy region ✓ World largest: 10-B J/ψ , 2.7-B ψ' , coming 20 $fb^{-1}\psi''$ data samples. *Chin. Phys. C* 44, 040001

✓ Motivation: the supersymmetric Standard Models, including Next-to-Minimal Supersymmetric Model, predict a CP-odd pseudoscalar Higgs A⁰. The A⁰ can be produced in quarkonium radiative decay

$$\frac{\mathcal{B}(V \to \gamma A^0)}{\mathcal{B}(V \to \mu^+ \mu^-)} = \frac{G_F m_q^2 g_q^2 C_{\text{QCD}}}{\sqrt{2}\pi\alpha} \left(1 - \frac{m_{A^0}^2}{m_V^2}\right),$$

Yukawa coupling of the A^0 field to the quark-pair: $g_c = \cos \theta_A / \tan \beta$, $g_b = \cos \theta_A \tan \beta$

- ✓ The A^0 can decay to two neutralinos (DM candidates)
- ✓ Search for the J/ψ radiative decay into a weakly interacting neutral particle in the process

Phys. Rev. Lett. 122, 011801

✓ Data sample: $448.1 \times 10^6 \psi(3686)$

- ✓ Analysis strategy:
 - Search for $J/\psi \rightarrow \gamma + \text{invisible with } J/\psi \text{ from } \psi(3686) \rightarrow \pi^+ \pi^- J/\psi$
 - Clean environment and high trigger efficiency
 - First tag J/ψ events by selecting two charged pions, then search for $J/\psi \rightarrow \gamma$ +invisible, the branching fraction is calculated:

$$\mathcal{B} = rac{N_{ ext{sig}} \cdot \epsilon_{J/\psi}}{N_{J/\psi} \cdot \epsilon_{ ext{sig}}},$$

✓ Perform semi-blind procedure to avoid possible bias

✓ Selections:

- only $\pi^+\pi^-$ and one good shower is required
- Signal shower and recoiled invisible must direct to the barrel region ($|\cos \theta| < 0.8$)
- ✓ Fit to the recoil mass $RM(\pi^+\pi^-)$, There are $8.848 \times 10^7 J/\psi$ events
- ✓ Huge background from $J/\psi \rightarrow n\bar{n}, \gamma n\bar{n}, \gamma K_L K_L$:
 - Using shower shape in EMC to identify γ from n, \overline{n}, K_L
 - The EMC shapes are studied using control samples $\gamma: J/\psi \to \rho \pi^0(\pi^0 \to \gamma \gamma)$ $n/\overline{n}: J/\psi \to p \pi n;$ $K_L: J/\psi \to K \pi K_L \& J/\psi \to \pi \pi \phi (\phi \to K_S K_L)$

- ✓ Signal extraction : The signal are searched on the E_{γ}^* range from 1.25 to 1.65 GeV, corresponding to a mass from 0 to 1.2 GeV/c² for the invisible particle
- ✓ Fit method:
 - Signal: Signal MC shape
 - Peaking background from $J/\psi \rightarrow \gamma \pi^0/\eta$: fixed
 - No-peak: exponential function
- ✓ No significant signal, max significance is 1.2σ

- ✓ Upper limits : Use the modified frequentist method to calculate upper limits of branching fraction $\mathcal{B}(J/\psi \rightarrow \gamma + invisible)$ A.L. Read, J. Phys. G 28, 2693
- ✓ For the zero mass assumption of the invisible particle , the upper limit is 7.0 × 10⁻⁷ 90% C.L., which is improved by a factor 6.2 compared to the previous CLEO result
 Phys. Rev. D 81, 091101
- ✓ The upper limits of $g_c \times tan^2 \beta \times \sqrt{B(J/\psi \rightarrow \gamma + \text{invisible})}$ for tan $\beta = 0.5, 0.6, \text{ and } 0.7$ are also reported. We obtain better sensitivity in the range tan $\beta < 0.6$ compared to the Belle result $g_b = g_c \times tan^2 \beta$ Phys. Rev. Lett. 122, 011801

- Motivation : Dark matter may be represented by baryon matter with invisibles, and many theories suggest a potential correlation between baryon symmetry and dark sector; *Phys. Rev. D* 105, 115005
- ✓ Discrepancy of neutron lifetime in beam method and the storage methods (4.1σ)

$$\tau_n^{beam} = \frac{\tau_n}{\mathcal{B}(n \to p + X)} > \tau_n^{bottle} \implies \mathcal{B}(n \to p + X) \approx 99\%$$

can be explained by 1% of the neutron decay into dark matter

Phys. Rev. D 99, 035031

✓ The first study of invisible baryon decays

- ✓ Data sample: 10B J/ψ events
- ✓ Analysis strategy:
 - $J/\psi \rightarrow \Lambda \overline{\Lambda}$ provide a clean environment for Λ invisible decay Double Tag Method:
 - Tag side: $\overline{\Lambda}$ is tagged by $\overline{\Lambda} \to \overline{p}\pi^+$, fit on recoil mass $RM(\overline{p}\pi^+)$ to obtain the $\overline{\Lambda}$ signal yield
 - Signal side: Λ decays invisibly

$$\mathcal{B}(\Lambda \rightarrow \text{invisible}) = \frac{N_{\text{sig}}}{N_{\text{tag}} \cdot (\varepsilon_{\text{sig}} / \varepsilon_{\text{tag}})}.$$

✓ The $\overline{\Lambda}$ invisible decay is not pursued, because the dominant background from $\overline{\Lambda} \to \overline{n}\pi^0$ is hard to estimate and simulate

y
$$J/\psi$$
 $\bar{\Lambda}$ π^+
 e^+ Λ e^-
invisible

✓ Tag side selections:

- Reconstruct $\overline{p}, \pi^+, |\cos(\theta_{\overline{\Lambda}})| < 0.7;$
- One of tracks is required TOF hit for good resolution of the event start time;
- ✓ **Signal side selections**: No additional charged track

4.1M Λ events

✓ Signal extraction : Search for signal on total energy in EMC E_{EMC} (not charged tracks);

• Dominating background: $\Lambda \rightarrow n\pi^0$

$$E_{\rm EMC} = E_{\rm EMC}^{\pi^0} + E_{\rm EMC}^n + E_{\rm EMC}^{\rm noise}$$

- $E_{EMC}^{\pi^0}$: Based on the MC simulations
- $E_{EMC}^{n} + E_{EMC}^{noise}$: Based on control sample $J/\psi \rightarrow \Lambda(n\pi^{0})\overline{\Lambda}(\bar{p}\pi^{+});$
- ✓ The corrected E_{EMC} for $\Lambda \to n\pi^0$ is derived by combining $E_{EMC}^{\pi^0}$ with a random value of the sum of $E_{EMC}^n + E_{EMC}^{noise}$
- \checkmark No obvious signals are observed

✓ Upper limit : A modified frequentist approach is adopted to estimate the UL of $\mathcal{B}(\Lambda \rightarrow invisible)$ A.L. Read, J. Phys. G 28, 2693 4.5 F

✓ The upper limit is $\mathcal{B}(\Lambda \rightarrow invisible) < 7.4 \times 10^{-5}$ at 90% C.L.

✓ The UL is consistent with the prediction of 4.4×10⁻⁷ from the mirror model *arXiv:2006.10746*

Summary

- \checkmark The invisible decays is one of the important ways to search for physics beyond SM
- ✓ In this talk, we reported:
 - $J/\psi \rightarrow \gamma$ +invisible: Using 448.1×10⁶ ψ (3686) data sample, no obvious signal is observed. The upper limits @ 90% C.L. mass(invisible) in [0,1.2] GeV/c² are measured, which is 6.2 time improved compared to the previous results *Phys. Rev. D* 101, 112005(2020)
 - $\Lambda \rightarrow invisible$: With 10 B J/ψ data sample, first search for Λ invisible decay and no obvious signals are observed. The upper limit is $\mathcal{B}(\Lambda \rightarrow invisible) < 7.4 \times 10^{-5}$ at 90% C.L. The result helps to constrain dark sector models related to the baryon asymmetry

Phys. Rev. D 105, L071101(2022)

✓ With the world's largest e^+e^- annihilation, more exciting results is ongoing and coming soon

