SEARCHES FOR LEPTOQUARKS WITH THE ATLAS DETECTOR

Merve Nazlim Agaras
on behalf of the ATLAS Collaboration

ICHEP 2022 Conference

9.07.2022

Introduction

- * Despite all its phenomenological successes, the SM has some unsolved problems (hierarchy problem, **flavor problem...**)
 - ▶ Is SM only an EFT? Is there a UV theory whose low energy limit is SM?
- * Searching for violation of accidental symmetries is a very powerful way to understand the **New Physics** properties
 - Lepton Flavor Universality anomalies on **charged** and **neutral** current processes in B-physics
 - Anomalous magnetic dipole moment of muon possibly connected to LFU violation (chirality-changing observable)
- * Leptoquarks are a good candidate as a BSM mediator to explain such anomalies
 - Predicted by many grand unified theories (GUT SU(5), Pati-Salam SU(4), RPV SUSY)
 - Connection between the quark and lepton sectors (coupling via a Yukawa interaction), carrying both lepton and baryon number
 - Can mediate flavour-changing-neutral-currents and enable violation of LFU
 - Two scalar or a single vector LQ -> the most optimal explanation for the B-anomalies

arXiv:1909.12524

3.10 excess in R_D and R_{D^*} combination

 $R(D^{(*)}) = \frac{\mathcal{B}(B \to D^* \tau \nu_{\tau})}{\mathcal{B}(B \to D^* \ell \nu_{\ell})}$ $\ell = e, u$

3.9σ global significance of NP in b→sμμ

$$R(K^{(*)}) = \frac{\mathscr{B}(B \to K^* \mu^+ \mu^-)}{\mathscr{B}(B \to K^* e^+ e^-)}$$

Phys. Rev. Lett. 126, 141801 (2021)

Leptoquarks

- * Many degrees of freedom
 - \triangleright Mass, electrical charge, scalar/vector type, Yukawa couplings (λ)
 - Can be produced in pairs, singly, off-shell, s/t-channel ...
 - β parameter: Determines the branching fraction of LQ into charge lepton (β =1) or neutrino (β =0)
- * In ATLAS, broad program of searches for pair-production and growing program of single LQ searches and interpretations in the context of vector LQ
 - Assume only one specific leptoquark
 - ▶ **Grid**: LQ mass vs β or λ
 - Scalar LQ: up-type (2/3e) and down-type (-1/3e) charge
 - Decays into flavour-diagonal or cross-generational (a.k.a "mix")
 - Vector LQ
 - Stronger model dependence needs UV completion
 - Nominal coupling to color ($\kappa = 0$) Yang Mills (YM)
 - Minimal coupling ($\kappa = 1$): coupling to gluon only via covariant derivative

Pair production

QCD driven process cross section depends on the mass

Single production

cross section $\propto \lambda^2$ sensitive to higher m_{LQ} for sufficiently high λ

Off-shell production

cross section $\propto \lambda^4$ non-resonant sensitive to very high masses possible interference with SM

Today's presentation

$$1.\tau LQ_s
ightarrow b au_{had} au_{had}/b au_{lep} au_{had}$$
 - NEW

$$2.LQ_{mix}^{d(u)} LQ_{mix}^{d(u)} \rightarrow t\nu b\ell/t\ell b\nu$$
 - Mar 22

$$3.LQ_{mix}^d LQ_{mix}^d \rightarrow t\ell t\ell$$
 - multilepton **NEW**

$\tau LQ_s \rightarrow b\tau_{had}\tau_{had}/b\tau_{lep}\tau_{had}$: Analysis strategy

- * Singly-produced scalar LQ decays into a τ lepton and a b-hadron in $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$ final states with non-resonant LQ production

 - ▶ Interpretation for LQ + LQLQ
- * Event selection
 - $ilde{}$ Single lepton (tau) trigger in $au_{lep} au_{had}$ ($au_{had} au_{had}$)
 - Opposite sign leptons
 - \geq 2 jets, \geq 1 b-jets, $\Delta\phi(\mathcal{C}, E_T^{miss}) < 1.5$, $m_{vis}^{\tau\tau} > 100~GeV$
 - ightharpoonup High $p_{T,lead\ bjet} > 200\ GeV$ to avoid SM interferences from non-resonance
- * Main backgrounds
 - \triangleright $t\bar{t}$, single top (reweighting as a function of S_T)
 - Fake au (scale factors as a function of $p_{T, au_{had}}$ and # of charged tracks)
- * Fit to signal regions
 - $> S_T > 300 \ GeV$
 - \triangleright S_T as discriminating variable

$$S_T = \sum_{bjet,\ell,\tau} p_T$$

Top control region after the correction scale factor

- * The first ATLAS result for LQ in the bττ final state!
- * Dominating systematic uncertainties: top related background modelling but highly statistically dominated in high masses
- * 95% C.L. upper limits set on **both scalar LQ and LQ+LQLQ production** scenarios
 - No significant deviations between the data and the expected SM background are observed
- * Observed exclusions for **single LQ** production:

$$m_{LQ} < 0.89 \ TeV, \ \lambda = 1.0$$

$$m_{LO} < 1.28 \ TeV, \ \lambda = 2.5$$

- * The most stringent limits are obtained with LQ+LQLQ combination
 - $m_{LO} < 1.25 \ TeV, \ \lambda = 0.5$
 - $m_{LQ} < 1.41 \ TeV, \ \lambda = 2.5$
- * Updated limits wrt $36 \, fb^{-1} \, LQ \, LQ \to b\tau b\tau$ analysis

$LQ_{mix}^{d(u)}$ $LQ_{mix}^{d(u)} \rightarrow t\nu b\ell/t\ell b\nu$: Analysis strategy

- * Search for pair-produced scalar and vector LQs decaying into thirdgeneration quarks and first- or second-generation leptons in **single lepton** final states
 - \triangleright optimised for $\beta = 0.5$
- * Pair produced scalar $LQ^u_{mix} \to t\nu, \ b\ell$ or $LQ^d_{mix} \to t\ell, \ b\nu$
- * Pair produced **vector** $LQ \to t\nu, \, b\ell$ with minimal or Yang-Mills coupling
- * Event selection
 - MET trigger, ≥4jets,≥1b-jet
- * Main backgrounds
 - Arr W+jets, single top (dedicated **CRs**), $t\bar{t}$ (rewighting as a function of M_{eff})
 - Free-floated $t\bar{t}$, single top and the W+jets normalisations
- * Neural network (NN) is trained for different signal hypothesis
 - NN_{out} <0.5 CR (single bin), NN_{out} >0.5 SR (multibin)
- * Simultaneous fit to all signal and control regions

$$M_{eff} = \sum_{jet,e,\mu} p_T + MET$$

- * Dominating systematic uncertainties: top related background modelling and Jet Energy Scale (JES) uncertainties but highly statistically dominated in high masses
- * 95% C.L. upper limits set on **eight** LQ model
 - No significant deviations between the data and the expected SM background are observed
- * Observed exclusions:
 - $m_{LQ^u_{mix} \rightarrow e(\mu)} < 1.44 \ TeV \ (1.47 \ TeV) \ {
 m for}$ $\beta = 0.5$
 - $m_{LQ_{mix}^d \rightarrow e(\mu)} < 1.39 \ TeV \ (1.37 \ TeV) \ \text{for}$ $\beta = 0.5$

LQ_{mix}^d $LQ_{mix}^d \rightarrow t\ell t\ell$: Analysis strategy

- * Search for pair production of LQs decaying into a top quark pair and a pair of electrons or muons, in multi-lepton final states (2 ℓ SS, 3 ℓ and 4 ℓ)
- * Pair produced scalar LQ_{mix}^d $LQ_{mix}^d \to t\ell t\ell$, $\ell(=e, \mu)$, $\beta=1.0$
- * Pair produced **vector** LQ $ilde{U}_1$
- * Event selection
 - Single and dilepton triggers, ≥ 2 jets, ≥ 1 b-jets
- * Main backgrounds (dedicated CRs + free-floated)
 - \triangleright $t\bar{t}W$, $t\bar{t}Z$, VV (V=Z,W), non-prompt ℓ
 - Additional VRs to validate the modelling
- * Signal regions
 - $M_{eff} > 500 \; GeV, \, m_{\ell\ell}^{min} > 200 \; (100) \; GeV \; \text{for 3}\ell \; (4\ell)$
 - $^{\triangleright}$ M_{eff} as discriminating variable
- * Simultaneous fit to all SRs and CRs

$$M_{eff} = \sum_{jet,e,\mu} p_T + MET$$

Summary of CRs

Signal populates the high tails of $M_{\it eff}$

- * Main systematic uncertainty from lepton identification, but analysis is statistically limited
- * 95% C.L. upper limits set on **both scalar and vector** LQ model
 - No significant deviations between the data and the expected SM background are observed
- * Observed exclusions ($LQ \rightarrow te (t\mu)$):
 - \triangleright Scalar $m_{LQ_{mix}^d} < 1.64 \ TeV$, (1.61 TeV)
 - Yang-Mills vector $m_{LQ_{\tilde{U}}} < 1.71 \ TeV$, (1.73 TeV)
 - ▶ Minimal coupling vector $m_{LQ_{\tilde{U}}} < 2.0 \ TeV$, $(2.0 \ TeV)$
- * The most stringent limits up-to-date!

In steps of 0.1 β

Summary of SRs

- * Overlays of exclusion contours of pair produced scalar leptoquark models
 - Third-Generation ($LQ_3^u \to t\nu b \tau$, $LQ_3^u \to t\nu t \nu$ and $LQ_3^d \to t\tau t \tau$, $LQ_3^d \to b\nu b \nu$ analyses)
 - Mixed-Generation ($LQ_{mix}^d \rightarrow b\nu/t\ell$, $LQ_{mix}^u \rightarrow t\nu/b\ell$)
 - More summary plots are available online!

* Combination is ongoing!

Summary

- * ATLAS has a broad program of searches for pair-production and growing program of single LQ searches and interpretations in the context of vector LQ
- * Presented the latest findings from searches for LQ with the ATLAS experiment
- * Stringent limits set on scalar LQs with flavour-diagonal and cross-generational couplings

- * More scenarios to cover
 - Vector LQ, single LQ, s-channel and off-shell production
- * LHC expected to further improve sensitivity with increasing luminosity!

Data event candidate for LQLQ>tete, ee μ channel, M_{eff} = 2.1 TeV

Preselection	
$E_{\rm T}^{\rm miss}$ triggers	

= 1 signal lepton

veto on additional baseline leptons $E_{\mathrm{T}}^{\mathrm{miss}} > 250\,\mathrm{GeV}$

 \geq 4 small-R jets

 $\Delta\Phi(E_{\rm T}^{\rm miss}, j_{1,2}) > 0.4$

top reweighting region	W+jets CR	single top CR	training region
$n_b \geq 1$	$n_b = 1$	$n_b = 2$	$n_b \geq 1$
$m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) \ge 120{\rm GeV}$	$50 \mathrm{GeV} \le m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}}) < 120 \mathrm{GeV}$	$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}}) < 120 \mathrm{GeV}$	$m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) \ge 120{\rm GeV}$
$am_{T2} < 200 \text{GeV}$	$am_{T2} > 200 \text{GeV}$	$am_{T2} > 200 \mathrm{GeV}$	$am_{T2} > 200 \mathrm{GeV}$
-	$t_{\rm had}$ candidate veto	large-R jet veto	-
-	lepton charge $= +1e$	_	-
_	-	$\Delta R(b_1, b_2) > 1.2$	-

Variable	Description
$m_{\mathrm{T}}(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	transverse mass of lepton and $E_{ m T}^{ m miss}$
$m_{ m eff}$	scalar sum of the transverse momenta of leptons, jets, and $E_{\rm T}^{\rm miss}$
lepton flavour	flavour of the signal lepton
$p_{ m T}(\ell)$	transverse momentum of the lepton
$m_{\mathrm{inv}}(b_1,\ell)$	invariant mass of leading- p_T b-jet and lepton
n_{lj}	reclustered large- R jet multiplicity
am_{T2}	asymmetric transverse mass
$E_{\rm T}^{\rm miss}$ significance	measure for the compatibility of the observed $E_{\rm T}^{\rm miss}$ with zero, taking resolutions
	of reconstructed objects into account
$m_T(b_1, E_{\mathrm{T}}^{\mathrm{miss}})$	transverse mass of leading- p_{T} b-jet and $E_{\mathrm{T}}^{\mathrm{miss}}$
$p_{\mathrm{T}}(t_{\mathrm{had}})$	transverse momentum of t_{had}
$\Delta\Phi(E_{\mathrm{T}}^{\mathrm{miss}},b_2)$	azimuthal angle separation between $E_{ m T}^{ m miss}$ and subleading- $p_{ m T}$ b -jet
$m_{\mathrm{inv}}(b_2,\ell)$	invariant mass of subleading- p_T b -jet and lepton
$\Delta\Phi(E_{ m T}^{ m miss},b_1)$	azimuthal angle separation between $E_{ m T}^{ m miss}$ and leading- $p_{ m T}$ b -jet
$\Delta\Phi(t_{\mathrm{had}},\ell)$	azimuthal angle separation between t_{had} and lepton
$p_{\mathrm{T}}(b_1)$	transverse momentum of leading- $p_{\rm T}$ b -jet

	Exp. limit [GeV]	Obs. limit [GeV]
$LQ_{mix}^{u} \rightarrow t\nu/b\mu$	1440^{+60}_{-60}	1460
$LQ_{mix}^{u} \rightarrow tv/be$	1440^{+60}_{-60}	1440
$LQ_{mix}^{d} \rightarrow t\mu/b\nu$	1380^{+50}_{-60}	1370
$LQ_{mix}^{d} \rightarrow te/bv$	1410^{+60}_{-60}	1390
$vLQ_{mix}^{YM} \rightarrow tv/b\mu$	1930^{+50}_{-60}	1980
$vLQ_{mix}^{YM} \rightarrow tv/be$	1930^{+50}_{-70}	1900
$vLQ_{mix}^{min} \rightarrow tv/b\mu$	1660^{+50}_{-50}	1710
$vLQ_{mix}^{min} \rightarrow tv/be$	1650^{+50}_{-60}	1620

	3ℓ							
	CR			VR SR		SR		
	3ℓVV	3ℓttZ	3ℓIntC	3ℓMatC	3ℓVR	3ℓSR- <i>e</i>	3ℓ SR- μ	
e/μ selection				M (SS p	air), L other			
e/μ combination		3e / 2	e1μ/1e2μ/	3μ	3e / 2e1μ / 1e2μ / 3μ	3е / ееµ	3μ/μμε	
Total charge	±	1	-	_	±	1		
e internal conversion veto	Yes	Yes	Inverted	Yes	Ye	es	·s	
			$(\ell_1 \text{ or } \ell_2)$	$(\ell_1 \text{ and } \ell_2)$				
e material conversion veto	Yes	Yes	Yes	Inverted	Yes			
			$(\ell_1 \text{ and } \ell_2)$	$(\ell_1 \text{ or } \ell_2)$				
Number of jets	≥	≥ 2 ≥ 0 ≥ 2						
Number of b-jets	≥ 1	≥ 2	$2 \geq 0 \geq 1$					
p_{T}^{ℓ} [GeV]		> 20 (SS pair), > 10 other			> 20			
$m_{\ell^+\ell^-}^{OS-SF}$ [GeV]		> 12						
$ m_{\ell^+\ell^-}^{OS-SF}-m_Z $ [GeV]	<	< 10 > 10		< 10				
$ m_{\ell\ell\ell}-m_Z $ [GeV]	_	- < 10		_				
$m_{\ell\ell}^{\mathrm{min}}$ [GeV]	_		< 200	≥	200			
$m_{\rm eff}$ [GeV]	_			_	≥	500		

	4ℓ					
	VR SR					
	4ℓVR	4ℓSR-e	4ℓ SR- μ			
e/μ selection		L				
e/μ combination	4e / 3e1μ / 2e2μ / 4μ	$4e / 3e1\mu / 2e2\mu$ (lead e)	$4\mu / 3\mu 1e / 2\mu 2e$ (lead μ)			
Total charge	0					
Number of jets	≥ 2					
Number of b-jets	≥ 1					
p_{T}^{ℓ} [GeV]		> 10				
$m_{\ell^+\ell^-}^{OS-SF}$ [GeV]		> 12				
$ m_{\ell^+\ell^-}^{OS-SF} - m_Z $ [GeV]		< 10				
$m_{\ell\ell}^{\mathrm{min}}$ [GeV]	< 100	≥	100			
m _{eff} [GeV]	_	≥ :	500			

	2ℓSS CRs			
	2ℓtt(e)	$2\ell \mathrm{tt}(\mu)$	2ℓttW	
e/μ selection	$TM_{ex} \parallel M$	$M_{ex}T \parallel M_{ex}M_{ex}$	TT	
e/μ combination	eelµe	μμ/εμ	eelµµleµlµe	
$\ell\ell$ charge		++ or		
e internal conversion veto		Yes		
e material conversion veto		Yes		
Number of jets		≥ 2		
Number of b-jets		≥ 1	≥ 2	
p_{T}^{ℓ} [GeV]		> 20		
$m_{\rm T}(\ell_0, E_{\rm T}^{\rm miss})$ [GeV]		< 250	-	

ICHEP2022 - Searches for leptoquarks with the ATLAS detector | 9 July 2022 | M.Nazlim Agaras

	$\lambda = 1.0$		$\lambda = 1.7$		$\lambda = 2.5$	
Source / m_{LQ}	0.9 TeV	1.6 TeV	0.9 TeV	1.6 TeV	0.9 TeV	1.6 TeV
Top background modeling	0.11	0.05	0.12	0.08	0.13	0.12
Tau reconstruction/identification	0.06	0.05	0.06	0.05	0.06	0.06
Tau energy scale	0.05	0.02	0.05	0.05	0.06	0.05
Flavor tagging	0.02	0.03	0.02	0.03	0.02	0.03
Signal acceptance	0.01	0.03	0.01	0.03	0.04	0.04
Others	0.03	0.02	0.03	0.03	0.04	0.04
Total	0.16	0.11	0.17	0.15	0.22	0.21

