Exploiting the discovery potential of the LHC data using the Data Directed Paradigm

Shikma Bressler

Bump hunt DDP - S. Volkovitch, F. DeVito Halevi, SB [2107.11573] Symmetry DDP - M. Birman, B. Nachman, R. Sebbah, G. Sela, O. Turetz, SB [2203.07529]

Most searches conducted following the blind analysis paradigm

- Signal region selection motivated by
 - Theoretical considerations highly motivated models are the first one to be tested
 - Final states (di-X resonance searches)
 - Topologies

Most searches conducted following the blind analysis paradigm

- Advantage
 - Smaller chance for biassing the results
 - Best sensitivity for pre-defined signals
- Disadvantages
 - Thousands of person years are spent studying region of the data that turn out to have nothing interesting in them
 - Large portion of the data is not fully exploited

Example I - Resonances

	P 11 T		-	$\tau = a/a$	ь	t	č	Z/W	Н	$BSM \to SM_1 \times SM_1$			$BSM \to SM_1 \times SM_2$			$\mathrm{BSM} \to \mathrm{complex}$			
	c	μ	1	q/g	0	i	7	2/11	11	q/g	$\gamma/\pi^0{\rm `s}$	<i>b</i> ····	tZ/H	bH		$\tau qq'$	eqq'	$\mu q q'$	
e	[37, 38]	[39, 40]	[39]	ø	ø	ø	[41]	[42]	ø	ø	ø	ø	ø	ø	ø	ø	[43, 44]	ø	
μ		[37, 38]	[39]	ø	ø	ø	[41]	[42]	ø	ø	ø	ø	ø	ø	ø	ø	ø	[43, 44]	
τ			[45, 46]	ø	[47]	ø	ø	ø	ø	ø	ø	ø	ø	ø	ø	[48, 49]	ø	ø	
q/g				$\left[29, 30, 50, 51\right]$	[52]	ø	[53, 54]	[55]	ø	ø	ø	ø	ø	ø	ø	ø	ø	ø	
ь					[29, 52, 56]	[57]	[54]	[58]	[59]	ø	ø	ø	[60]	Ø	ø	ø	ø	ø	
t						[61]	ø	[62]	[63]	ø	ø	ø	[64]	[60]	ø	ø	ø	ø	
γ							[65, 66]	[67-69]	[68, 70]	ø	ø	ø	ø	ø	ø	ø	ø	ø	
Z/W								[71]	[71]	ø	ø	ø	ø	ø	ø	ø	ø	ø	
H									[72, 73]	[74]	ø	ø	ø	ø	ø	ø	ø	ø	
q/g										ø	ø	ø	ø	ø	ø	ø	ø	ø	
$\sim \gamma/\pi^0$'s											[75]	ø	ø	ø	ø	ø	ø	ø	
× b												[76, 77]	ø	ø	ø	ø	ø	ø	
SN :																			
↑																			
BSN																			
:																			

arXiv:1907.06659

Mostly inclusive searches – so the data should be exploited far beyond what is seen in this table

Example II – LU and LFC

- LU and LFC in the SM give rise to symmetry between e's, μ 's and τ 's
 - Up to Yukawa interactions and phase space effect
- The discovery of an e/μ asymmetry == New physics
 - Strong motivation to search for such asymmetries
- In practice, most of the data is not yet explored

Tested symmetry		inclusive		Obje	Object multiplicity				Decays			Topologies		
			τ	j	bj	γ	Κ			W		VBF	$t\bar{t}$	
	e/μ									[31-34]				
LU - U(3)	$ee/\mu\mu$ OS						[24]		[29, 30]					
	$ ee/\mu\mu$ SS													
LFC - $U(1)^{3}$	$e\mu/\mu e \text{ OS}$	$\ $ [27,28]										[27, 28]		
	$ e\mu/\mu e SS$													
	$ e^+\mu^-/e^-\mu^+$	[35]		[35]										

שכוז ויצמז למדע ICHEP 2022 שכוז ויצמז למדע BOLOGNA

Example II – LU and LFC

- LU and LFC in the SM give rise to symmetry between e's, μ 's and τ 's
 - Up to Yukawa interactions and phase space effect
- The discovery of an e/μ asymmetry == New physics
- Strong motivation to search for such asymmetries
 In practice, most of the data is not yet explored

								R_{κ}	anoma	ly	
Tested symmetry		inclusive	Obj	ect mul	tiplicity	_]	Decays		Topo	ologies	s
Table			au j	bj	γ K		W		VBF	$t \bar{t}$	
	$\frac{15 \text{ d VVIP}}{1 \text{ e}/\mu}$						[31-34]	1			
LU - U(3)	$ee/\mu\mu$ OS				[24]	[29,30]	[0]				
	<i>ee/µµ</i> 55										
LFC - $U(1)^3$	$e\mu/\mu e ext{ OS} e\mu/\mu e ext{ SS}$	[27,28]							[27, 28]		
	$\left \begin{array}{c} e^+\mu^-/e^-\mu^+ \end{array} \right.$	[35]	[35]								

Searches based on the data

- Event-based anomaly detection
 - Autoencoders etc.
- Semi-supervised approaches

The LHC Olympics 2020

A Community Challenge for Anomaly Detection in High Energy Physics

Gregor Kasieczka (ed),¹ Benjamin Nachman (ed),^{2,3} David Shih (ed),⁴ Oz Amram,⁵ Anders Andreassen,⁶ Kees Benkendorfer,^{2,7} Blaz Bortolato,⁸ Gustaaf Brooijmans,⁹ Florencia Canelli,¹⁰ Jack H. Collins,¹¹ Biwei Dai,¹² Felipe F. De Freitas,¹³ Barry M. Dillon,^{8,14} Ioan-Mihail Dinu,⁵ Zhongtian Dong,¹⁵ Julien Donini,¹⁶ Javier Duarte,¹⁷ D. A. Faroughy¹⁰ Julia Gonski,⁹ Philip Harris,¹⁸ Alan Kahn,⁹ Jernej F. Kamenik,^{8,19} Charanjit K. Khosa,^{20,30} Patrick Komiske,²¹ Luc Le Pottier,^{2,22} Pablo Martín-Ramiro,^{2,23} Andrej Matevc,^{8,19} Eric Metodiev,²¹ Vinicius Mikuni,¹⁰ Inês Ochoa,²⁴ Sang Eon Park,¹⁸ Maurizio Pierini,²⁵ Dylan Rankin,¹⁸ Veronica Sanz,^{20,26} Nilai Sarda,²⁷ Uroš Seljak,^{2,3,12} Aleks Smolkovic,⁸ George Stein,^{2,12} Cristina Mantilla Suarez,⁵ Manuel Szewc,²⁸ Jesse Thaler,²¹ Steven Tsan,¹⁷ Silviu-Marian Udrescu,¹⁸ Louis Vaslin,¹⁶ Jean-Roch Vlimant,²⁹ Daniel Williams,⁹ Mikaeel Yunus¹⁸

arXiv:1807.07447

Searches based on the data

- Event-based anomaly detection
 - Autoencoders etc.
- Semi-supervised approaches
- Generic data/mc comparison
 - HERA \rightarrow D0 & CDF \rightarrow CMS & ATLAS
 - Sensitivity to MC mismodeling and statistics

Object Label $p_{\rm T}$ (min) [GeV] Pseudorapidity Isolated electron 25 $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$ P Isolated muon 25 $|\eta| < 2.7$ Isolated photon 50 $|\eta| < 1.37$ or $1.52 < |\eta| < 2.37$ Y *b*-tagged jet 60 $|\eta| < 2.5$ 60 $|\eta| < 2.8$ Light (non-b-tagged) jet $E_{\rm T}^{\rm miss}$ 200 Missing transverse momentum

e.g. 1µ, 3e3j, ... 10jMET, etc.

Data is divided to mutually exclusive classes according to object multiplicity

• A total of 704 event classes with at least 1 data event and/or 0.1 SM event prediction

8

08|s

Searches based on the data

- Event-based anomaly detection
 - Autoencoders etc.
- Semi-supervised approaches
- Generic data/mc comparison
- The data directed paradigm
 - Identify a property of the SM and look for regions exhibiting significant deviation from this property No MC is needed.

The Data Directed Paradigm

- Our proposal relies solely on the data
 - Not limited by MC
- Based on two key ingredients
 - A theoretically well established property of the SM based on which deviations from the SM predictions can be searched for
 - An efficient tool that allows rapid scanning of many final states in search for such a deviation
- Complementary to ML-based method developed in an attempt to enhance the Signal/Background ratio

Tested symmetry		inclusive	$\left \begin{array}{c} \tau \end{array} \right _{\tau}$	Object m i bi	ultip γ	licity K	 I Z	Decays W	 Topo VBF	$\frac{1}{t\bar{t}}$	s
LU - U(3)	is a WIP ee/μμ OS ee/μμ SS				/	[24]	 [29,30]	[31-34]			
LFC - U(1) ³	$\begin{vmatrix} e\mu/\mu e \text{ OS} \\ e\mu/\mu e \text{ SS} \end{vmatrix}$								[27,28]		
CP	$ e^+ \mu^- / e^- \mu^+$	[35]	[[35]							

The Data Directed Paradigm

- Our proposal relies solely on the data
 - Not limited by MC
- Based on two key ingredients
 - A theoretically well established property of the SM based on which deviations from the SM predictions can be searched for
 - An efficient tool that allows rapid scanning of many final states in search for such a deviation
- Complementary to ML-based method developed in an attempt to enhance the Signal/Background ratio

Tested symmetry			inclusive	Object multiplicity						I	Topologies				
	is a WIP		merusive	τ	j	bj	γ	Κ		Z	W		VBF	tt	
											[31-34]				
LU - U(3)	$ee/\mu\mu$ O	S						[24]		[29, 30]					
	$ $ ee/ $\mu\mu$ S	$S \parallel$													
LFC - $U(1)^{3}$	$e\mu/\mu e$ O	S	[27, 28]										[27, 28]		
	$ e\mu/\mu e S$	$S \parallel$													
CP	$ e^+\mu^-/e^- $	$\mu^+ \parallel$	[35]		[35]										

Example I - resonances

S. Volkovitch, F. DeVito Halevi, SB [2107.11573]

- The SM property:
 - In absence of resonances most invariant mass distributions are smoothly falling
- The tool:
 - An NN that maps invariant mass distributions to significances (q0)

Example I - resonances

- Looking at 1 mass bin with no signal injected
- This is the standard background-only scenario
- Using profile-likelihood tests statistics $q_0 = Z^2$ should follow the χ^2 distributions
- This is also the case for the NN prediction

True q₀ Predicted q Chi2_pdf, df = 1Chi2_pdf, df = 1 10³ 10³ Entries 10⁵ 10² 10¹ 10¹ 0 2 6 8 10 2 8 4 0 4 6 q0 true q0 predicted

Example I – resonances - Performance

- Significance predicted in almost no time
 Precision almost as good as that expected in blind analysis
 - The latter exploits the PLR test statistics and rely on exact knowledge of the signal and background shape
 - *concept proved on synthetic data

Fig. 2 The difference between $z_{\text{pred}}^{\text{max}}$ and $z_{\text{true}}^{\text{max}}$ as a function of $z_{\text{true}}^{\text{max}}$. Dense regions are shown in red (roughly corresponding to the 1σ region), while sparse regions are shown in blue.

Fig. 3 The distribution of z_{true}^{\max} (solid line) and z_{pred}^{\max} (dashed line) for samples with no signal added (blue) and for samples with a 3σ significance signal added (orange)

Example II - symmetries

M. Birman, B. Nachman, R. Sebbah, G. Sela, O. Turetz, SB [2203.07529]

- The SM property:
 - Any exact or approximate symmetry of the SM: $\underline{e/\mu}$, CP, forward backward, ...
- The tool:
 - Symmetries allows splitting the data into two mutually exclusive datasets
 - Under the symmetry assumption they originate from the same underline distributions
 - N_{σ} test statistics that identifies rapidly asymmetries between two datasets –

in this case the datasets are projected to histograms

$$N_{\sigma}(B,A) = \frac{1}{\sqrt{M}} \sum_{i=1}^{M} \frac{B_i - A_i}{\sqrt{A_i + B_i}}$$

Example II - symmetries

- An "ideal" analysis
 - Background shape is perfectly known
 - Signal shape and resolution are perfectly know
 - 0 uncertainties
 - Sensitivity calculate with profile likelihood test statistics
- Analysis relaying on symmetry considerations
 - Data is split into two mutually exclusive sample one serves as a background estimate to the other
 - Background model from the data based on symmetry assumption
 - Systematic uncertainty due to available statistics in the "other" sample
 - Signal shape and resolution are perfectly know
 - Sensitivity calculate with profile likelihood test statistics

Example II – symmetries - Performance

- The N_{σ} calculation is rapid
- Can scan with no time as many matrices as one want
- Can scan sub-matrices
- Sensitivity is restored fast

Semi-supervised training vs the DDP

- First attempt to identify asymmetries using ML techniques
 - Demonstrate the potential of such methods but, so far, does not perform as good as the N_{σ} test

Summary

- Thousands of person hours invested so far in search for BSM physics
- Resulted in an impressive set of bounds on many BSM models
- No hints for BSM physics
- The data is far from being fully exploited New physics could easily be hidden in the already collected data
- Complementary search paradigms should be exploited
- The Data Directed Paradigm is one such possibility
 - Allows scanning rapidly many different final states and many different selection and mark those that are potentially interesting
- Concept demonstrated with two different properties of the SM
- ATLAS searches are slowly ramping up