

Searches for third generation supersymmetric particles with the CMS experiment

PABLO MATORRAS-CUEVAS

Instituto de Física de Cantabria (CSIC-Universidad de Cantabria)

International Conference on High Energy Physics, Bologna (Italy) July 08th, 2022

Outline of the talk

- Introduction to third generation Supersymmetry (SUSY).
- Selected SUSY results:
 - o top squark (stop) searches:
 - → Stop in all hadronic final states: <u>Phys.Rev.D 104 (2021) 5, 052001</u>
 - → Stop hadronic & leptonic combination : <u>Eur.Phys.J.C 81 (2021) 11, 970</u>.

 \rightarrow Stop 4 body decays in 11 final states:

New!

New!

o Bottom squark (sbottom) searches.

CMS-PAS-SUS-21-003

- o Tau slepton (stau) searches:
 - → Direct stau production <u>CMS-PAS-SUS-21-001</u>
- o R-Parity Violation (RPV) and Stealth searches:
 → Stop decays: <u>PhysRevD.104.032006</u>
- Long lived particles (LLP) searches:
 → 2 displaced leptons: Eur. Phys. J. C 82, 153 (2022)
- Summary and Outlook

N.b. This is just a selection of analyses, the full up to date physics results are in: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS</u>

P. Matorras-Cuevas | ICHEP22

Why third generation?

- In SUSY, Third generation sfermions are favoured by naturalness.
- Sizable cross-section at 13 TeV.
- Typically, decaying to a third generation quark/lepton.
- If R-Parity is conserved, decays involve lightest neutralino (LSP) →DM candidate.

Stop searches: hadronic final states

Targeting events with multiple jets, high p_{τ}^{miss} and veto on leptons. Dedicated object reconstructions in terms of $\Delta m(stop, LSP)$:

- Low mass: soft b-tagging+initial state radiation (ISR) jets
- High mass: DNN to identify boosted top quarks or W bosons

Signal regions defined in bins of several event kinematic variables and multiplicities of dedicated objects

CMS 137.0 fb⁻¹ (13 TeV) $m_{\widetilde{\chi}^0_1}$ [GeV] 1000 10^{2} pp $\rightarrow \tilde{t} \, \tilde{t}, \tilde{t} \rightarrow t \, \tilde{\chi}^0$ upper limit on cross section [pb] Approx. NNLO+NNLL exclusion Observed $\pm 1 \sigma_{\text{theory}}$ 900 10 Expected \pm 1, 2 $\sigma_{experiment}$ 800 700 600F 500F 10 400F 10 300 200 С 10⁻³ 95% 100 1200 1400 200 1000 400 600 800 m_∓ [GeV]

Phys.Rev.D 104 (2021) 5. 052001

P. Matorras-Cuevas | ICHEP22

Top squark searches: summary

More details in Jaana's talk

- Several analyses have been made, searching for direct decays of stop in final states with hadrons and leptons.
- Analyses results have been combined in:
 <u>Eur.Phys.J.C 81 (2021) 11, 970</u>.
 - → Stop mases excluded up to 1300 GeV for low LSP masses.
 - → Exclusion of m_{stop} up to 1100 GeV for m_{LSP}= 700 GeV
 - → ∆m ≃ m_{top} region also now excluded.

Top squark 4-body decays in 11 final states

More details in Zach's talk

- Targeting top squark four body decays, each of them involving a b-jet, two other fermions, and the LSP.
- SUSY signals are investigated so that the mass splitting (Δm) is smaller than the W boson's mass.
- Selecting events 11 plus jets, with high H_T and p_T^{miss}, and applying a using a boosted decision tree (BDT), using the p_T^{miss} together with lepton jets and b-tagged-jets variables as discriminant.
- The BDT is trained per each Δm .
- Main backgrounds: W+jets and ttbar+jets.

CMS-PAS-SUS-21-00

Top squark 4-body decays in 11 final states

More details in Zach's talk

- No statistically significant deviations between data and expectations were found.
- Limits set up on the stop mass to 480 GeV for ∆m=10 GeV and of 700 GeV for ∆m=80 GeV
- ~100 GeV higher than CMS analysis with 2016 data (<u>JHEP 09 (2018) 065</u>)
- ~120 GeV more sensitive than ATLAS' equivalent analysis (JHEP 04 (2021) 174) in the low Am area

CMS-PAS-SUS-21-003

Bottom squark searches: summary

- Several analyses have been made by CMS targeting the bottom squark, mainly in the all hadronic channel, taking advantage of the b-tagging techniques.
- Limits were on the sbottom mass were set up to 1200 GeV for low LSP masses, and up to 800 GeV in the compressed area.

Direct tau squark pair production

- Looking for stau pair production where each stau decays to a hadronic τ (τ_h) and the LSP:
- Using the sum of each τ_h m_T (Σm_T)as discriminant variable, as well as the m_{T2}.
- Considers also displaced leptons
- stau masses up to 400 GeV excluded for the prompt case, and between 150 and 220 GeV for cτ₀=0.1 mm

P. Matorras-Cuevas | ICHEP22

250

300

350

200

150

100

CMS-PAS-SUS-21-001

9

 $m(\tilde{\tau})$ [GeV]

R-Parity Violation and stealth searches at CMS

PhysRevD.104.032006

- R-Parity violation scenarios also studied by CMS via stop decays in final states with no p_T^{miss} (besides neutrinos).
- Results also interpreted for a model where the stop decays through an hidden (stealth) SUSY sector

Excluded masses up to 670 GeV for RPV and 870 GeV

 P_2 \tilde{t} \tilde{t} \tilde{t} \tilde{t}

for Stealth SUSY $10^{2} \text{ CMS } pp \rightarrow \tilde{t} \tilde{\tilde{t}}, \tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow jjj$ $10 \text{ RPV } 68\% \text{ expected } 95\% \text{ or nexted } 10^{2} \text{ cms } 95\% \text{ or nexted } 10^{2} \text{ cms } 95\% \text{ or nexted } 10^{2} \text{ cms } 95\% \text{ or nexted } 10^{2} \text{ cms } 95\% \text{ or nexted } 10^{2} \text{ cms } 95\% \text{ or nexted } 10^{2} \text{ cms } 95\% \text{ or nexted } 10^{2} \text{ cms } 95\% \text{ or nexted } 10^{2} \text{ cms } 95\% \text{ or nexted } 10^{2} \text{ cms } 10$

Long lived particles: Displaced leptons

<mark>Eur. Phys. J. C 82, 153 (2022)</mark> More details in Celia's talk

Search defined to be sensitive to any model whose signature includes 2 displaced leptons (e μ , $\mu\mu$, ee).

- Uses transverse impact parameters (d_0) as the discriminant variable, with $10\mu m < |d_0| < 10cm$.
- Limits set for stop and stau production.

Summary and future prospects

- Plenty of analyses have been published by CMS combining Run 2 data targeting third generation SUSY particle production, also in RPV and LLP models.
- So far, many constraints on SUSY particle generations have been set, constraining the third generation squarks over 1300 GeV and the tau slepton at 400 GeV for low m_{LSP}.
- However, not all faith is lost!
 - o Current exclusions come under assumptions that could be proven wrong.
 - Run-3 Is around the corner with more data, and new phase spaces will become available (compressed area, even more boosted scenarios...), and thus SUSY further probed.

hanks for your attention

Event variables' definition

- H_{T} : scalar p_{T} sum of all jets.
- Transverse mass:

$$m_{\rm T} = \sqrt{2p_{\rm T}p_{\rm T}^{\rm miss}(1-\cos\Delta\phi)}$$

► m_{T2}: Stransverse mass

$$m_{\text{T2}} = \min_{\vec{p}_{\text{T}}^{X(1)} + \vec{p}_{\text{T}}^{X(2)} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max\left(m_{\text{T}}^{(1)}, m_{\text{T}}^{(2)}\right) \right]$$

• $\Sigma m_T (\underline{CMS-PAS-SUS-21-001})$: sum of each $\tau_h m_T$

$$\Sigma m_{\rm T} = m_{\rm T}(\tau_{\rm h}^{(1)}, \vec{p}_{\rm T}^{\rm miss}) + m_{\rm T}(\tau_{\rm h}^{(2)}, \vec{p}_{\rm T}^{\rm miss})$$

 d₀: the distance of closest approach in the transverse plane of the helical trajectory of the track with respect to the beam axis.
 +info <u>here</u>

P. Matorras-Cuevas | ICHEP22

Bottom squark pair production

CMS-PAS-SUS-20-00

- Part of a more general analysis also probing dileptonic events with jets and p_{T}^{miss} .
- In particular, the sbottom is searched in pairs, each decaying through a decay to a b-quark and the next to LSP.
- Events with at least two jets and high m_{τ_2} and p_{τ}^{miss} are required
- A Bayes discriminator is used to classify events in tt-bar like or not, giving as input variables such as $p_t^{\text{miss}}, p_T^{\parallel}, \text{ or } \Delta \phi^{\parallel}, \text{ in } m_{\tau_2} \text{ bins.}$
- sbottom masses up to 1600 GeV were excluded

15

Stop searches: $\Delta m \approx mtop$

Eur.Phys.J.C 81 (2021) 11, 970

Very challenging since the signal kinematics similar to SM ttbar events

- DNN to differentiate signal from bkg
 - o At least 2 jets (at least 1 b-tagged), p_T^{miss} >50 GeV and 2 leptons.
 - Stop/neutralino masses included in the training, with optimised weights per mass point

Final state ttbar+ low mass neutralinos \rightarrow Relatively low p_t^{miss}

Whole corridor excluded for the 1st time in CMS

