

Searches in CMS for new physics in final states with jets

Eirini Tziaferi National and Kapodistrian University of Athens (NKUA)

on behalf of the CMS collaboration

ICHEP2022: International Conference on High Energy Physics, 6-13 July 2022, Bologna

Motivation

- The Standard Model (SM) of particle physics is incomplete:
 - Why is there an imbalance of matter and antimatter in the universe?
 - How does gravity fit into our model?
 - Why do quarks and leptons come in three generations? Are they elementary particles?
 - Why are gauge couplings so different, are they unified at a higher scale? Are there more forces in nature?
 - > What is 95% of the Universe made of?
- Many models of physics that extend the SM often require new particles that couple to quarks and/or gluons and decay to jets.

Composition Of The Universe arXiv: 1502.01589

Jet resonance searches in CMS

There is a variety of recent resonance searches in CMS, with jets in final states using data from Run II (2016-2018) with an integrated luminosity of 138 fb⁻¹: CMS EXO public results A selection of recent Full Run II results will be discussed in this talk:

- Search for VBF production of SS muons through Majorana neutrinos or the Weinberg operator (CMS-EXO-21-003)
- Search for high-mass resonances decaying to a jet and a Lorentzboosted resonance (CMS-EXO-20-007)
- Search for resonant and nonresonant production of pairs of dijet resonances (CMS-EXO-21-010)
- Search for LQs decaying to tau and b (CMS-EXO-19-016)

There is a dedicated talk on displaced jet analyses by Celia Fernandez Madrazo.

Search for VBF $\rightarrow \mu^{\pm}\mu^{\pm}$ through **Majorana N or the Weinberg operator**

CMS-EXO-21-003

Experimental Signature:

- Two SS µ's and two jets.
- The cross section of VBF t-channel process decreases more slowly with increasing m_{N} compared with the traditional N hunting strategy (s-channel production $q\bar{q}$ annihilation).

Backgrounds:

- Main: WZ and non-prompt leptons estimated using CRs.
- <u>Others</u>: WW, ZZ, tZq, ttW, ttZ, and VVV

Signal Models:

- VBF HMN at Seesaw type I
- Weinberg operator Dim.5
 - Wilson coefficient $C_5^{\ell\ell'} \sim |m_{\mu\mu}|$

Results on VBF $\rightarrow N \rightarrow \mu\mu$ through Majorana N or the Weinberg operator

CMS-EXO-21-003

Di-tri-jets Search

Experimental Signature:

Two large-radius (wide) resolved jets, one coming from R2 (R2-jet) and one coming from the third parton (P3-jet):

- > $pp \rightarrow R1 \rightarrow R2 + P3 \rightarrow (P1 + P2) + P3$
- P1, P2, P3 are gluons

Main backgrounds:

Multijet QCD production estimated with a datadriven method, using several parametric functional forms. Discrimination between signal and QCD background, by exploiting jet substructure information and kinematics of the decay.

Signal Models:

Warped extra dimensions where R1 is a KK gluon (GKK), R2 is a radion (φ) > GKK $\rightarrow \varphi g \rightarrow g g g$ (trijet)

Search largely model independent.

CMS-EXO-20-007

Results on Di-tri-jets

• Maximum likelihood fit in the dijet mass performed in the SRs.

- Excess: 1.8 σ global (3.2 σ local) \rightarrow look into it in Run III.
- By exploring a novel experimental signature, we extend significantly the experimental exclusion of this benchmark model of new physics at the LHC.

Paired Dijet Search

8

Experimental Signature:

Four or two resolved jets paired to same mass resonances.

Main backgrounds:

Multijet QCD production estimated with a data-driven method, using several parametric functional forms.

Signal Models:

Two modes of pair production of dijet resonances:

• **Resonant** → Benchmark model: Diquark decaying to vector-like quarks which decay to an up quark and gluon.

 $uu \to S \to \chi \chi \to (ug)(ug)$

• Non-resonant → Benchmark model: R-parity violating stop pairs decaying to a d and s quark.

$$pp \to \widetilde{t} \widetilde{t}^* \to (\overline{d} \, \overline{s})(ds)$$

Search largely model independent.

Results of resonant search

 These are the first LHC limits on resonant pair production of dijet resonances via high mass intermediate states.

Results of nonresonant search

- CMS-EXO-20-010
- Maximum likelihood fit in the average dijet mass performed in the SRs.

- Excess: 2.5 σ global (3.6 σ local) \rightarrow look into it in Run III.
- Results significantly extend the previous limits.

Experimental Signature:

2 τ's and 1 or 2 b tag jets

<u>Channels</u>: $\tau_{h}\tau_{h}$, $e\tau_{h}$, $\mu\tau_{h}$ and $\mu\mu$, $e\mu$

Backgrounds:

<u>Main</u>: $\overline{Z} \rightarrow \tau\tau$, $t \overline{t}$ (constrained by $\mu\mu$ and $e\mu$ channel respectively), $j \rightarrow \tau_h$ fake (estimated by the Fake Factor method) <u>Others</u>: diboson, single top

Signal Models:

- Scalar & vector LQ signals
- Production modes: LQ pair, nonres, single
- coupling strength $\lambda = 1-2.5$
- For vector LQ:

 $\kappa = 1,0$: (non) minimal coupling

20

Event categories: ≥ 1 jet (0 or 1 b tag) and 0 jet (3 m_{vis} bins)

- Simultaneous maximum likelihood fit of LQ signals in χ and S_{τ}^{MET} .
- Reorder bins by S/(S+B) from fit with total signal.

13

Upper limits placed on scalar / vector LQ on the three production modes: $\sigma^{tot} \equiv \sigma^{single} + \sigma^{pair} + \sigma^{nonres}$

- Upper limits are set on the third-generation scalar LQ production cross section and on coupling strength as a function of the LQ mass.
- We observe a ~3 σ excess above m_{LQ} > 1800 GeV driven by the non-resonance mode \rightarrow look into it in Run III.

Summary

- Hadronic final states offer great sensitivity to many models of new physics.
- Searches for hadronic resonances in CMS were presented:
 - No significant deviations from SM so far but several excesses to keep an eye and to drive us where to look next.
 - Constraints in several benchmark models.
- Significant **improvements** due to
 - Data driven methods to estimate the background.
 - > Jet sub-structure techniques.
 - Increased luminosity with full Run II datasets.
 - New final states are explored.
- Hope that with all the improvements and advancements on reconstruction, trigger, analysis approaches and techniques, we should be able to fully exploit the Run III discovery potential and either make a discovery, or improve limits beyond luminosity scaling.

Thank you!

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "1st Call for H.F.R.I. Research Projects to support Faculty Members & Researchers and the Procurement of High-and the procurement of high-cost research equipment grant" (Project Number: 16576).

Back up

Paired Dijet Search

(Data-Fit) Uncertainty

3 2

-3

2

138 fb⁻¹ (13 TeV)

8

Search for LQ₃ (scalar) \rightarrow bt

18

Search for $LQ_3 \rightarrow b\tau$

 λ : coupling strength of the LQ-lepton-quark vertex

Search for $LQ_3 \rightarrow b\tau$

Table 2: Best-fit LQ cross sections σ for various masses and coupling strengths λ , and the corresponding significance z (given in standard deviations) for different production modes individually, as well as their combination.

Signal	$m_{\rm LQ} = 1400 {\rm GeV}$		$m_{\rm LQ} = 2000 {\rm GeV}$	
	σ [pb]	z	σ [fb]	Z
Scalar				
Pair	$0.24\substack{+0.47\\-0.45}$	0.5	$0.22\substack{+0.41\\-0.39}$	0.0
Single, $\lambda = 1$	$1.15^{+0.95}_{-0.92}$	1.3	$0.64_{-0.65}^{+0.68}$	1.0
Single, $\lambda = 2.5$	$9.1^{+5.6}_{-5.3}$	1.7	18^{+11}_{-11}	1.7
Nonres.	70^{+23}_{-22}	3.4	63^{+20}_{-19}	3.5
Total, $\lambda = 1$	$1.7^{+1.9}_{-1.8}$	0.9	$9.6^{+6.2}_{-5.9}$	1.7
Total, $\lambda = 2.5$	43^{+16}_{-15}	2.9	62^{+20}_{-19}	3.4
Vector, $\kappa = 0$				
Pair	$0.24\substack{+0.46\\-0.44}$	0.0	$0.24\substack{+0.41\\-0.39}$	0.0
Single, $\lambda = 1$	$1.00\substack{+0.89\\-0.85}$	1.2	$0.60^{+0.66}_{-0.63}$	1.0
Single, $\lambda = 2.5$	$9.1^{+6.5}_{-6.2}$	1.5	25^{+18}_{-17}	1.4
Nonres.	58^{+18}_{-17}	3.5	51+16	3.5
Total, $\lambda = 1$	$1.2^{+1.5}_{-1.4}$	0.8	$7.7^{+5.1}_{-4.8}$	1.7
Total, $\lambda = 2.5$	$12.2_{-6.8}^{+7.1}$	1.8	43^{+15}_{-14}	3.1
Vector, $\kappa = 1$				
Pair	$0.24^{+0.46}_{-0.44}$	0.0	$0.24^{+0.41}_{-0.39}$	0.0
Single, $\lambda = 1$	$1.00^{+0.89}_{-0.85}$	1.2	$0.60^{+0.66}_{-0.63}$	1.0
Single, $\lambda = 2.5$	$9.1^{+6.5}_{-6.2}$	1.5	25^{+18}_{-17}	1.4
Nonres.	58^{+18}_{-17}	3.5	51^{+16}_{-15}	3.5
Total, $\lambda = 1$	$0.42^{+0.69}_{-0.66}$	0.0	$1.3^{+1.5}_{-1.4}$	0.5
Total, $\lambda = 2.5$	$12.2^{+7.1}_{-6.8}$	1.8	43^{+15}_{-14}	3.1

20

Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the alljets final state B2G-20-009

- The bosons that are highly Lorentz-boosted they form a single large-radius jet.
- Novel machine learning techniques are employed to distinguish jets from W, Z, and H boson decays from other jets.

- In a HVT model, spin-1 Z' and W' resonances with masses below 4.8 TeV are excluded at the 95% CL.
- These limits are the best to date.
- Limits also on graviton model, boson production through VBF etc.

Local (global) significance of 3.6 (2.3) σ for mild excesses of events at masses of 2.1 and 2.9 TeV \rightarrow Look into it in Run 3