Searches in CMS for new physics in final states with jets

Eirini Tziaferi
National and Kapodistrian University of Athens (NKUA)
on behalf of the CMS collaboration
Motivation

• The Standard Model (SM) of particle physics is incomplete:
 ➢ Why is there an imbalance of matter and antimatter in the universe?
 ➢ How does gravity fit into our model?
 ➢ Why do quarks and leptons come in three generations? Are they elementary particles?
 ➢ Why are gauge couplings so different, are they unified at a higher scale? Are there more forces in nature?
 ➢ What is 95% of the Universe made of?

• Many models of physics that extend the SM often require new particles that couple to quarks and/or gluons and decay to jets.
There is a variety of recent resonance searches in CMS, with jets in final states using data from Run II (2016-2018) with an integrated luminosity of 138 fb$^{-1}$: CMS EXO public results

A selection of recent Full Run II results will be discussed in this talk:

- Search for VBF production of SS muons through Majorana neutrinos or the Weinberg operator (CMS-EXO-21-003)

- Search for high-mass resonances decaying to a jet and a Lorentz-boosted resonance (CMS-EXO-20-007)

- Search for resonant and nonresonant production of pairs of dijet resonances (CMS-EXO-21-010)

- Search for LQs decaying to tau and b (CMS-EXO-19-016)

There is a dedicated talk on displaced jet analyses by Celia Fernandez Madrazo.
Search for $VBF \rightarrow \mu^+\mu^-$ through Majorana N or the Weinberg operator

Experimental Signature:
- Two SS μ’s and two jets.
- The cross section of VBF t-channel process decreases more slowly with increasing m_N compared with the traditional N hunting strategy (s-channel production $q\bar{q}$ annihilation).

Backgrounds:
- **Main**: WZ and non-prompt leptons estimated using CRs.
- **Others**: WW, ZZ, tZq, ttW, ttZ, and VVV

Signal Models:
- VBF HMN at Seesaw type I
- Weinberg operator Dim.5
 - Wilson coefficient $C_5^{\ell\ell'} \sim |m_{\mu\mu}|$

CMS-EXO-21-003

13 TeV LHC

σ / σ_{SM} vs m_N [GeV]
Results on $\text{VBF} \rightarrow N \rightarrow \mu\mu$ through Majorana N or the Weinberg operator

- Discriminating variable for both analyses is $H_T/p_T(\mu_1)$.

- The first search for Majorana N at several TeV: reaching very high m_N up to 23 TeV.

- A first probe of the Weinberg operator at the LHC: upper limit on effective $|m_{\mu\mu}|$: obs (exp) 10.8 (12.8) GeV.
Di-tri-jets Search

Experimental Signature:
Two large-radius (wide) resolved jets, one coming from R2 (R2-jet) and one coming from the third parton (P3-jet):
- \(pp \rightarrow R1 \rightarrow R2+P3 \rightarrow (P1+P2) +P3 \)
- \(P1, P2, P3 \) are gluons

Main backgrounds:
Multijet QCD production estimated with a data-driven method, using several parametric functional forms. Discrimination between signal and QCD background, by exploiting jet substructure information and kinematics of the decay.

Signal Models:
Warped extra dimensions where R1 is a KK gluon (GKK), R2 is a radion (\(\phi \))
- \(GKK \rightarrow \phi g \rightarrow ggg \) (trijet)
Search largely model independent.

22 SRs defined in the \(m(R2)/m(P3) \) plane.
Results on Di-tri-jets

- Maximum likelihood fit in the dijet mass performed in the SRs.
- Excess: 1.8 σ global (3.2 σ local) \rightarrow look into it in Run III.
- By exploring a novel experimental signature, we extend significantly the experimental exclusion of this benchmark model of new physics at the LHC.
Paired Dijet Search

Experimental Signature:
Four or two resolved jets paired to same mass resonances.

Main backgrounds:
Multijet QCD production estimated with a data-driven method, using several parametric functional forms.

Signal Models:
Two modes of pair production of dijet resonances:

• **Resonant** → Benchmark model: Diquark decaying to vector-like quarks which decay to an up quark and gluon.

 \[uu \rightarrow S \rightarrow \chi \chi \rightarrow (u g)(u g) \]

• **Non-resonant** → Benchmark model: R-parity violating stop pairs decaying to a d and s quark.

 \[pp \rightarrow \tilde{t} \tilde{t}^* \rightarrow (d \bar{s})(d s) \]

Search largely model independent.
Results of resonant search

- Maximum likelihood fit in the four jet mass performed in the SRs.
- Excess: 1.6 σ global (3.9 σ local) \rightarrow look into it in Run III.

- These are the first LHC limits on resonant pair production of dijet resonances via high mass intermediate states.
Results of nonresonant search

- Maximum likelihood fit in the **average dijet mass** performed in the SRs.

Excess: 2.5 σ global (3.6 σ local) \rightarrow look into it in Run III.
- Results significantly extend the previous limits.
Search for LQs → τb
...motivated by B-anomalies

Experimental Signature:
2 τ’s and 1 or 2 b tag jets

Channels:
τhτh, eτh, μτh, and μμ, eμ

Backgrounds:
Main: Z → ττ, t ¯t (constrained by μμ and eμ channel respectively), j → τh fake (estimated by the Fake Factor method) Others: diboson, single top

Signal Models:
• Scalar & vector LQ signals
• Production modes: LQ pair, nonres, single
• coupling strength λ = 1-2.5
• For vector LQ:
 κ = 1,0: (non) minimal coupling

See also Olena Karacheban’s talk
Results on LQs $\rightarrow \tau b$

Event categories: ≥ 1 jet (0 or 1 b tag) and 0 jet (3 m_{vis} bins)

$S_T^{\text{MET}} \equiv p_T^1 + p_T^2 + p_T^{\text{met}}$

$\chi = e^{\Delta \eta}$

- Simultaneous maximum likelihood fit of LQ signals in χ and S_T^{MET}.
- Reorder bins by $S/(S+B)$ from fit with total signal.

~3σ
Upper limits placed on the third-generation scalar LQ production cross section and on coupling strength as a function of the LQ mass.

We observe a $\sim 3\sigma$ excess above $m_{LQ} > 1800$ GeV driven by the non-resonance mode \rightarrow look into it in Run III.
Summary

- Hadronic final states offer great sensitivity to many models of new physics.

- Searches for hadronic resonances in CMS were presented:
 - No significant deviations from SM so far but several excesses to keep an eye and to drive us where to look next.
 - Constraints in several benchmark models.

- Significant improvements due to
 - Data driven methods to estimate the background.
 - Jet sub-structure techniques.
 - Increased luminosity with full Run II datasets.
 - New final states are explored.

- Hope that with all the improvements and advancements on reconstruction, trigger, analysis approaches and techniques, we should be able to fully exploit the Run III discovery potential and either make a discovery, or improve limits beyond luminosity scaling.
Thank you!

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “1st Call for H.F.R.I. Research Projects to support Faculty Members & Researchers and the Procurement of High-and the procurement of high-cost research equipment grant” (Project Number: 16576).
Back up
Paired Dijet Search
Search for LQ_3 (scalar) $\rightarrow b\tau$
Search for $\text{LQ}_3 \rightarrow b \tau$

λ: coupling strength of the LQ-lepton-quark vertex
Table 2: Best-fit LQ cross sections σ for various masses and coupling strengths λ, and the corresponding significance z (given in standard deviations) for different production modes individually, as well as their combination.

<table>
<thead>
<tr>
<th>Signal</th>
<th>$m_{LQ} = 1400 \text{ GeV}$</th>
<th>$m_{LQ} = 2000 \text{ GeV}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sigma \text{ [pb]}$</td>
<td>z</td>
</tr>
<tr>
<td>Scalar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pair</td>
<td>$0.24^{+0.47}_{-0.45}$ 0.5</td>
<td>$0.22^{+0.41}_{-0.39}$ 0.0</td>
</tr>
<tr>
<td>Single, $\lambda = 1$</td>
<td>$1.15^{+0.95}_{-0.92}$ 1.3</td>
<td>$0.64^{+0.68}_{-0.65}$ 1.0</td>
</tr>
<tr>
<td>Single, $\lambda = 2.5$</td>
<td>$9.1^{+5.6}_{-5.3}$ 1.7</td>
<td>18^{+11}_{-11} 1.7</td>
</tr>
<tr>
<td>Nonres.</td>
<td>70^{+13}_{-22} 3.4</td>
<td>63^{+120}_{-19} 3.5</td>
</tr>
<tr>
<td>Total, $\lambda = 1$</td>
<td>$1.7^{+1.9}_{-1.8}$ 0.9</td>
<td>$9.6^{+6.2}_{-5.9}$ 1.7</td>
</tr>
<tr>
<td>Total, $\lambda = 2.5$</td>
<td>43^{+16}_{-15} 2.9</td>
<td>62^{+20}_{-19} 3.4</td>
</tr>
<tr>
<td>Vector, $\kappa = 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pair</td>
<td>$0.24^{+0.46}_{-0.44}$ 0.0</td>
<td>$0.24^{+0.41}_{-0.39}$ 0.0</td>
</tr>
<tr>
<td>Single, $\lambda = 1$</td>
<td>$1.00^{+0.89}_{-0.85}$ 1.2</td>
<td>$0.60^{+0.66}_{-0.63}$ 1.0</td>
</tr>
<tr>
<td>Single, $\lambda = 2.5$</td>
<td>$9.1^{+6.5}_{-6.2}$ 1.5</td>
<td>25^{+18}_{-17} 1.4</td>
</tr>
<tr>
<td>Nonres.</td>
<td>58^{+18}_{-17} 3.5</td>
<td>51^{+16}_{-15} 3.5</td>
</tr>
<tr>
<td>Total, $\lambda = 1$</td>
<td>$1.2^{+1.5}_{-1.4}$ 0.8</td>
<td>$7.7^{+5.1}_{-4.8}$ 1.7</td>
</tr>
<tr>
<td>Total, $\lambda = 2.5$</td>
<td>$12.2^{+7.1}_{-6.8}$ 1.8</td>
<td>43^{+15}_{-14} 3.1</td>
</tr>
<tr>
<td>Vector, $\kappa = 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pair</td>
<td>$0.24^{+0.46}_{-0.44}$ 0.0</td>
<td>$0.24^{+0.41}_{-0.39}$ 0.0</td>
</tr>
<tr>
<td>Single, $\lambda = 1$</td>
<td>$1.00^{+0.89}_{-0.85}$ 1.2</td>
<td>$0.60^{+0.66}_{-0.63}$ 1.0</td>
</tr>
<tr>
<td>Single, $\lambda = 2.5$</td>
<td>$9.1^{+6.5}_{-6.2}$ 1.5</td>
<td>25^{+18}_{-17} 1.4</td>
</tr>
<tr>
<td>Nonres.</td>
<td>58^{+18}_{-17} 3.5</td>
<td>51^{+16}_{-15} 3.5</td>
</tr>
<tr>
<td>Total, $\lambda = 1$</td>
<td>$0.42^{+0.69}_{-0.66}$ 0.0</td>
<td>$1.3^{+1.5}_{-1.4}$ 0.5</td>
</tr>
<tr>
<td>Total, $\lambda = 2.5$</td>
<td>$12.2^{+7.1}_{-6.8}$ 1.8</td>
<td>43^{+15}_{-14} 3.1</td>
</tr>
</tbody>
</table>
Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state

- The **bosons** that are **highly Lorentz-boosted** they form a single large-radius jet.

- **Novel machine learning techniques** are employed to distinguish jets from W, Z, and H boson decays from other jets.

- In a HVT model, spin-1 Z' and W' resonances with masses below 4.8 TeV are excluded at the 95% CL.

- These limits are the best to date.

- Limits also on graviton model, boson production through VBF etc.

Local (global) significance of 3.6 (2.3) σ for mild excesses of events at masses of 2.1 and 2.9 TeV → Look into it in Run 3