# SEARCH FOR THE DIRECT PRODUCTION OF CHARGINO PAIRS DECAYING VIA W BOSON IN $\sqrt{s} = 13$ TeV pp COLLISIONS WITH THE ATLAS DETECTOR

#### Introduction

| <b>upersymmetry (SUSY)</b> is one of the most interesting extension of the Standard Model (SM). |  |
|-------------------------------------------------------------------------------------------------|--|
| To each SM particle it associates a superpartner with spin (S) which differs by $1/2$ .         |  |

- In the Minimal Supersymmetric Standard Model (MSSM), R-parity,  $R = (-1)^{3(B-L)+2S}$ , is conserved.
- Neutralinos ( $\tilde{\chi}_i^0$ , with i = 1, 2, 3, 4) and charginos ( $\tilde{\chi}_i^{\pm}$ , with j = 1, 2)  $\rightarrow$  combination of the neutral or charged supersymmetric partners of the gauge and Higgs bosons.
- $\tilde{\chi}_1^0$  represents the Lightest Supersymmetric Particle (LSP) and a good dark matter candidate.

#### Searching strategy

S

The general strategy used in this search consists in:

## **Chargino direct production**

#### • Direct production of $\widetilde{\chi}_1^+ \widetilde{\chi}_1^-$ , where each

STANDARD MODEL

- 1. Considering "simplified" SUSY models (few new particles with masses as free parameters).
- 2. Optimization of the event selection to define **Signal Regions (SRs)**, where the signal from background discrimination is maximized.
- 3. Background estimate with semi data driven techniques, by normalizing Monte Carlo (MC) to data in **Control Regions (CRs)** chosen for a specific background. Normalization is validated in Validadon Regions (VRs), kinematically close to SRs.

4. Comparing data to expected backgrounds in SRs:

evidence/discovery of signal if a significant excess of data over the expected background is observed or setting **upper limits** on the SUSY cross section and on the tested model parameters if data are compatible with the SM expectation.

# Machine learning approach

In order to improve analysis sensitivity a **machine learning** technique has been applied, using the **Boosted Decision Tree (BDT)**:

• Training uses, for both signal and background samples, a set of kinematic variables relevant for the signal-background discrimination.



- A multiclass classification is performed  $\rightarrow$  the classifier is trained to separate events into four classes:
  - signal, -**diboson** (*VV*),

- chargino decays into  $\widetilde{\chi}_1^0$  and a W-boson (which decays leptonically) in the pp collision at LHC.
- The analysis uses data collected by the ATLAS experiment during full Run 2 (2015-2018), at  $\sqrt{s} = 13$  TeV, corresponding to  $139 \text{ fb}^{-1}$ .



**Final state:** • 2 opposite signed leptons  $(\ell = e, \mu)$  $E_T^{\text{miss}}$  ( $\widetilde{\chi}_1^0$  and  $\nu$ ) • No hadronic activity

SUPERSYMMETRY

• A previous analysis [1] has produced exclusion limits at 95% CL in kinematic regions with large mass-splitting:

$$m(\widetilde{\chi}_1^{\pm},\widetilde{\chi}_1^0)=m(\widetilde{\chi}_1^{\pm})-m(\widetilde{\chi}_1^0)>m(W).$$

• The current analysis targets the **"moderately**" compressed region":

$$\Delta m(\widetilde{\chi}_1^\pm,\widetilde{\chi}_1^0)=m(\widetilde{\chi}_1^\pm)-m(\widetilde{\chi}_1^0)\lesssim m(W).$$

# **Signal Regions**

| • Firstly an event preselection applies cuts on      | Signal region (SRs)            | SR-DF SR-SF                                                                        |
|------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------|
| lenton transverse momentum dilenton invari-          | n <sub>b-tagged</sub> jets     |                                                                                    |
|                                                      | E <sup>miss</sup> significance | >8                                                                                 |
| ant mass and $E_T^{\text{mass}}$ significance.       | $m_{T2}$ [GeV]                 | >50                                                                                |
| • Then a further collection is applied for the SPs   | BDT-other                      | < 0.01                                                                             |
| • Then, a further selection is applied for the SINS. |                                | $\in$ (0.81,0.8125] $\in$ (0.77,0.775]                                             |
|                                                      |                                | $\in (0.8125, 0.815] \in (0.775, 0.78]$                                            |
|                                                      | BDT-signal                     | $\in (0.813, 0.8175] \in (0.785, 0.785]$<br>$\in (0.8175, 0.82] \in (0.785, 0.79]$ |
| SRs are defined as bins with high values in BDT-     |                                | $\in (0.82, 0.8225] \in (0.79, 0.795]$                                             |
| signal                                               |                                | $\in$ (0.8225 ,0.825] $\in$ (0.795 ,0.80]                                          |
| Signal.                                              |                                | $\in (0.825, 0.8275] \in (0.80, 0.81]$                                             |
|                                                      |                                | $\in (0.8275, 0.83] \in (0.81, 1]$<br>$\in (0.83, 0.8325]$                         |
|                                                      |                                | ∈(0.8325,0.835]                                                                    |
|                                                      |                                | €(0.835 ,0.8375]                                                                   |
|                                                      |                                | ∈(0.8375 ,0.84]                                                                    |
|                                                      |                                | $\in (0.84, 0.845]$                                                                |
|                                                      |                                | ∈(0.845,0.85]                                                                      |

main SM backgrounds -**top** ( $t\bar{t}$  and Wt),

-other (Z+jets,  $Z(\rightarrow \tau \tau)$ +jets, VVV, and minor backgrounds).

For each event, the four scores BDT-signal, BDT-VV, BDT-top and BDT-other provide the probability for the event to belong to each class, and sum to one.

• Two different selections considered: **DF0J** and **SF0J**, characterized by different flavour (DF) and same flavour (SF) leptons respectively and no hadronic jets in the final state.

### **Control and Validation Regions**



- CRs and VRs defined by reversing the BDT-signal cut applied to the SRs,
- CR-VV targets the diboson background and CR- <sup>0 jet</sup> top targets the top-quark background,
- Six VRs are used to verify the agreement of data and SM predictions.

Control regions (CRs)

Validation Regions (VRs)

CR-top

**CR-VV** 

**CR/VR/SR** orthogonal to each other

**VR-VV-DF** VR-VV-SF

VR-top0J-DF VR-top0J-SF

VR-top-DF VR-top-SF

SR

BDTSignal

# **Results and conclusions**

• No significant deviations in data from the SM predictions have been observed in any of the SRs. Exclusion limits at 95% CL are set on the masses of the chargino and the neutralino which extend the limits set by previous analyses on the same search:

chargino masses up to 135 GeV are excluded at 95% CL in the case of a mass splitting between chargino and neutralino up to 100 GeV.





∈(0.85,0.86]

∈(0.86,1]

|                                     | CR-V                    | /                 | CR-t       | top               | VR-VV-DF                 | VR-VV-SF     | VR-top-DF      | √R-top-SF   | VR-top0J-DF VR-t              | op0J-SF    |
|-------------------------------------|-------------------------|-------------------|------------|-------------------|--------------------------|--------------|----------------|-------------|-------------------------------|------------|
| $E_T^{\text{miss}}$ significance    |                         | > 8               |            |                   |                          |              | > 8            |             |                               |            |
| $m_{T2}$ [GeV]                      |                         | > 50              |            |                   |                          |              | > 50           | )           |                               |            |
| <b>n</b> non- <i>b</i> -tagged jets |                         | = 0               |            |                   |                          |              | = 0            |             |                               |            |
| Lepton Flavour                      | DF                      | SF                | DF         | SF                | DF                       | SF           | DF             | SF          | DF                            | SF         |
| <i>n<sub>b-tagged</sub> jets</i>    | = 0                     | = 0               | = 1        | =1                | = 0                      | = 0          | = 1            | = 1         | = 0                           | = 0        |
| BDT-other                           | -                       | < 0.01            | -          | < 0.01            | -                        | < 0.01       | -              | < 0.01      | -                             | < 0.01     |
| BDT-signal                          | $\in$ (0.2, 0.65] $\in$ | $(0.2, 0.65] \in$ | (0.5, 0.7] | ∈ (0.7, 0.75]   ∈ | $\in$ (0.65, 0.81] $\in$ | (0.65, 0.77] | $\in$ (0.7, 1] | ∈ (0.75, 1] | $\in$ (0.5, 0.81] $\in$ (0.5) | 0.5, 0.77] |
| BDT-VV                              | > 0.2                   | > 0.2             | -          | -                 | > 0.2                    | > 0.2        | -              | -           | < 0.15                        | < 0.15     |
| BDT-top                             | < 0.1                   | < 0.1             | _          | _                 | < 0.1                    | < 0.1        | -              | -           | _                             | _          |

#### References

[1] ATLAS Collaboration, Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in  $\sqrt{s}$ =13 TeV pp collisions using the ATLAS detector, Eur. Phys. J. C 80 123, 2020, arXiV:1908.08215

[2] ATLAS Collaboration, Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the W boson mass in  $\sqrt{s}=13$ TeV pp collisions with the ATLAS detector, ATLAS-CONF-2022-006, 2022

Matteo  $Greco^{[1,2]}$ , on behalf of the ATLAS Collaboration <sup>[1]</sup>INFN, Lecce Unit, <sup>[2]</sup>University of Salento, Lecce (Italy) International Conference on High Energy Physics, Bologna (Italy), July, 6-13, 2022

