multi-leptons probes of NP & lepton flavor universality @ top - systems

ICHEP2022 - BSM 7/7/2022

Based on:

1

"Tri- and four-lepton events as a probe for new physics in ttll contact interactions" NPB (2022), 115849, arxiv: 2111.13711, Afik(CERN), SBS(Technion), Pal(UCR), Soni(BNL), Wudka(UCR)

"New flavor physics in di- and trilepton events from single-top production at the LHC and beyond", PRD103 (2021), 075031, arxiv: 2101.05286, Afik, SBS, Soni, Wudka

"High pT correlated tests of lepton universality in lepton(s) + jet(s) processes; An EFT analysis", PLB811 (2020), 135908, arxiv: 2005.06457, Afik, SBS, Cohen (Technion), Soni, Wudka

> Shaouly Bar-Shalom shaouly@physics.technion.ac.il

multi-leptons signals – a window to NP

2

$$\begin{aligned} (1\ell): pp &\to \ell^{\pm} + n \cdot j_b + m \cdot j + \not\!\!\!E_T + X , \\ (2\ell): pp &\to \ell'^+ \ell''^- + n \cdot j_b + m \cdot j + \not\!\!\!E_T + X , \\ (3\ell): pp &\to \ell'^{\pm} \ell^+ \ell^- + n \cdot j_b + m \cdot j + \not\!\!\!E_T + X , \\ (4\ell): pp &\to \ell'^{\pm} \ell''^{\mp} \ell^+ \ell^- + n \cdot j_b + m \cdot j + \not\!\!\!E_T + X \end{aligned}$$

- Rich & clean signals in the hadronic environment of the LHC

- Excellent test ground for NP (e.g., in pp \rightarrow ttV, ttH, tV, tttt ...):
 - Sensitive to many types of underlying NP

(lepton-flavor violation, lepton universality violation, lepton-number violation - same sign leptons, CP violation ...)

- easy to construct observables with charged leptons
- High-E/p_T (TeV energies ...) leptons still relatively unexplored
- Allows flavor-blind searches of flavor-changing underlying NP
- Correlated multi-lepton channels due to common underlying NP!

multi-leptons signals - a window to NP

- Example: multi-leptons + top-quarks signals
- Source: SU(2) triplet 4-Fermi involving 3rd gen quarks and muons

- Use correlations to gain sensitivity to NP
- i.e., amonng no-lepton, mono-lepton & di-lepton signals of single-top production

"High pT correlated tests of lepton universality in lepton(s) + jet(s) processes; An EFT analysis", PLB(2020), 135908, arxiv: 2005.06457, Afik, SBS, Cohen, Soni, Wudka Some hints for NP in multi-lepton - top-quark systems ? with typical scale of NP around the TeV ...

heavy states around the TeV-scale generate top-leptons 4-Fermi

B-anomalies

Kamenik,Soreq,Zupan PRD2018 (1704.06005); Camargo-Molina,Celis,Faroughy PLB2018 (1805.04917); Ciuchini,Coutinho,Fedele,Franco,Paul,Silvestrini,Valli, EPJC2019 (1903.09632)

Required scale: $\Lambda \sim O(1)$ TeV !

Underlying physics ...

LQ

e.g., a tensor ttll 4-Fermi term

with $\Lambda \sim \text{few TeV}$

Our EFT parameterization for NP in top/bottom systems:

 $\mathcal{L}_{q_{3}q_{i}\ell\ell} = \frac{1}{\Lambda_{\ell}^{2}} \sum_{i,j=L,R} \left[V_{ij}^{\ell} \left(\bar{\ell}\gamma_{\mu}P_{i}\ell \right) \left(\bar{q}_{3}\gamma^{\mu}P_{j}q_{i} \right) + S_{ij}^{\ell} \left(\bar{\ell}P_{i}\ell \right) \left(\bar{q}_{3}P_{j}q_{i} \right) + T_{ij}^{\ell} \left(\bar{\ell}\sigma_{\mu\nu}P_{i}\ell \right) \left(\bar{q}_{3}\sigma_{\mu\nu}P_{j}q_{i} \right) \right]$

can be generated through tree-level exchanges of heavy vectors & scalars (or their Fierz transforms).

Assume: $\Lambda(ll) \ll \Lambda(ll')$

Dictionary:

- ℓ : LH e, μ lepton doublet
- q : LH quark doublet
- q_3 : LH t-b doublet
- P_L/P_R : LH/RH projection doublet

Typical bounds on such 4-Fermi interactions with 1st & 2nd gen quarks are $\Lambda > O(10 \text{ TeV}) - \text{recent di-lepton searches give } \Lambda > 20-30 \text{ TeV}$

Matching - SMEFT (e.g., top-quark 4-Fermi):

$$\frac{4 - \operatorname{Fermi} : (\bar{L}L)(\bar{L}L)}{\left| \begin{array}{c} \mathcal{O}_{lq}^{(1)}(prst) \\ \mathcal{O}_{lq}^{(3)}(prst) \\ \mathcal{O}_{lq}^{$$

Current sensitivities (bounds ...)

what do we know about the dim.6 (2t)(21) & (tu)(21) opts

Flavor changing (tu)(2l)

LEP: (A(tuee) > 0.5 – 1.5 TeV) (depending on Lorentz structure) SBS,Wudka PRD1999 PLB2002 (0210041) ; EPJC2011 (1102.4455)

LHC (pp \rightarrow tt followed by t \rightarrow µµ + jet): (Λ (tuµµ) ~ Λ (tuee) > ~ 0.4 – 1 TeV (depending on Lorentz structure)

Chala,Santiago,Spannowsky JHEP2019 (1809.09624) also studied in: Davidson,Mangano,Perries,Sordini EPJC2015 (1507.07163) Durieux,Maltoni,Zhang PRD2015 (1412.7166) Aguilar-Saavedra NPB2011 (1008.3562) Boughezal,Chen,Petriello,Wiegand PRD2019 (1907.00997)

7

Flavor diagonal (2†)(2l)

LHC: $\Lambda > \sim 0.5$ TeV (scalar,vector: S,V =1) $\Lambda > \sim 1$ TeV (tensor: T=1)

CMS: from pp → tt+leptons search JHEP2021 (2012.04120)

ATLAS: our reinterpretation of pp \rightarrow 3I & 4I measurements in 2107.00404

B-physics(bb \rightarrow ee, µµ) + gauge invariance: bbll \rightarrow ttll for opts with left handed quark isodoublets (V_{LL} and V_{RL}) $\Lambda > \sim 2 \text{ TeV} (V_{LL}, V_{RL} = 1)$

Greljo, Marzocca, EPJ2017 (1704.09015)

collider signatures of ttll & tull contact terms

$$\mathcal{L}_{q_{3}q_{i}\ell\ell} = \frac{1}{\Lambda_{\ell}^{2}} \sum_{i,j=L,R} \left[V_{ij}^{\ell} \left(\bar{\ell}\gamma_{\mu}P_{i}\ell \right) \left(\bar{q}_{3}\gamma^{\mu}P_{j}q_{i} \right) + S_{ij}^{\ell} \left(\bar{\ell}P_{i}\ell \right) \left(\bar{q}_{3}P_{j}q_{i} \right) + T_{ij}^{\ell} \left(\bar{\ell}\sigma_{\mu\nu}P_{i}\ell \right) \left(\bar{q}_{3}\sigma_{\mu\nu}P_{j}q_{i} \right) \right]$$

ttll: flavor diagonal

NPB2022 (2111.13711), Afik, SBS, Pal, Soni, Wudka PLB2020 (2005.06457), Afik, SBS, Cohen, Soni, Wudka

tull: flavor changing

PRD2021, (2101.05286), Afik, SBS, Soni, Wudka

SM (irreducible Backg)

ttll: flavor diagonal

NPB2022 (2111.13711), Afik, SBS, Pal, Soni, Wudka PLB2020 (2005.06457), Afik, SBS, Cohen, Soni, Wudka

tull: flavor changing

PRD2021, (2101.05286), Afik, SBS, Soni, Wudka

background

 $pp \rightarrow tt,$ Z+jets, VV, ttV, tVV , followed by t and V decays \ldots

Selections

Selection	2ℓ	3ℓ	4ℓ
Number of Leptons:	exactly 2	exactly 3	exactly 4
Jet multiplicity:	≥ 3	≥ 2	≥ 2
Number of b-jets:	≥ 1	≥ 1	≥ 1
$m_{\ell\ell}^{OSSF(nt)}$:	> n	$n_{\ell\ell}^{\tt{min}}$	

Selection	2ℓ	3ℓ
Number of Leptons:	exactly 2	exactly 3
Jet multiplicity:	inclu	isive
Number of b-jets:	=1	inclusive
$m_{\ell\ell}^{OSSF}$:	> n	$n_{\ell\ell}^{\tt{min}}$

 $\begin{aligned} &(2\ell): pp \to \ell^+ \ell^- + n_{\geq 1} \cdot j_b + m_{\geq 3} \cdot j + X \ , \\ &(3\ell): pp \to \ell'^{\pm} \ell^+ \ell^- + n_{\geq 1} \cdot j_b + m_{\geq 2} \cdot j + X \ , \\ &(4\ell): pp \to \ell'^{\pm} \ell''^{\mp} \ell^+ \ell^- + n_{\geq 1} \cdot j_b + m_{\geq 2} \cdot j + X \end{aligned}$

$$(\ell'\ell\ell): pp \to \ell'\ell^+\ell^- + X ,$$

$$(\ell\ell 1b): pp \to \ell^+\ell^- + j_b + X$$

m_{II} (di-lepton inv-mass): a key discriminating parameter !

 m_{II} (di-lepton inv-mass): a key discriminating parameter !

Expected sensitivities

Simulations of events samples

- Simulation: MadGraph5_aMC@NLO
- NP models: UFO models generated with FeynRules
- PDF set: NNPDF30LO (ttll) & MSTW2008lo68cl (tull) 5 flavor scheme
- Selections & cuts: MadAnalysis5
- Parton shower: Pythia 8
- Detector simulation: Delphes 3

Expected sensitivity to

FC tull 4-Fermi terms

Generic tuµµ NP (also applicable to tuee ...)

"cut & count" : 95% CL bounds on NP from $tu\mu\mu$ 4-Fermi

Expected sensitivity to

diagonal tt# 4-Fermi terms

Generic ttµµ NP (also applicable to ttee ...) - "cut & count"

"Cut & Count" : 95% CL bounds on NP from ttµµ 4-Fermi

 $m_{\mu^+\mu^-}^{\tt min}$

Jet Selections: $N_j \ge 3, N_b \ge 1$							
	Final State	pp ightarrow	$\mu^+\mu^- + X$				
	Coupling	$m_{\mu^+\mu^-}^{\min}$ [GeV]	$\Lambda_{\min}(95\% \ CL) \ [\text{TeV}]$				
	$S_{RR} = 1$		0.8				
$\mathcal{L} = 140 \ \mathrm{fb}^{-1}$	$T_{RR} = 1$	1400	1.6				
	$V_{RR} = 1(-1)$		1.0 (1.0)				
	$S_{RR} = 1$		0.9				
$\mathcal{L}=300~{ m fb}^{-1}$	$T_{RR} = 1$	1400	1.8				
	$V_{RR} = 1(-1)$		1.1(1.1)				
	$S_{RR} = 1$		1.4				
$\mathcal{L} = 3000 \ \mathrm{fb}^{-1}$	$T_{RR} = 1$	1600	2.8				
	$V_{RR} = 1(-1)$		1.8(1.7)				

Di-lepton signal

	Jet Selection	ons: $N_j \ge$	$\geq 2, N_b \geq 1$	
pp ightarrow p	$\mu^+\mu^-\ell^\pm + X$		$pp ightarrow \mu^-$	$^+\mu^-\ell^\pm\ell^{'\mp}+X$
$_{\mu^{-}}$ [GeV]	$\Lambda_{\min}(95\% \ CL) \ [\text{TeV}]$		$m_{\mu^+\mu^-}^{\min}$ [GeV]	$\Lambda_{\min}(95\% \ CL) \ [\text{TeV}]$
	0.7			0.4
500	1.8		300	1.0
	1.1(1.1)			0.7(0.7)
	0.8			0.5
500	2.0		300	1.1
	1.3(1.2)			0.8(0.7)
	1.3			0.8
800	2.9		500	1.8
2.0(1	2.0(1.9)			1.3(1.2)
	the set service code in the Cardin Inserts	a second a second		

tri-lepton signal

four-lepton signal

 $\Lambda(V_{RR},T_{RR}) \sim 2-3 \text{ TeV} [HL-LHC & m_{min}(\mu\mu) > 800 \text{ GeV}]$

Sensitivity via tri-lepton signal: (di-lepton comparable ...)

Lepton Flavor Non-Universality (NP = ttµµ only ...)

the case $\Lambda_{\mu} << \Lambda_{e}$

sensitivity via MC sim of synthetic data

Construct generic LFU tests & search for asymmetric rates of muons vs electrons in multi-leptons signals

Ratio observables

particularly useful/reliable: potentially minimize theor. & sys(exp) uncertainties (NLO QCD, loop-EFT, PDF ...)

di-lepton	$R^{2l}_{\mu/e} = \frac{\sigma(pp \to \mu^+\mu^- + X)}{\sigma(pp \to e^+e^- + X)} , \qquad \mathbf{X} \in \mathbf{our} \ \mathbf{se}$	elections
tri-lepton	$R^{3l}_{\mu/e} = \frac{\sum_{\ell=e,\mu} \sigma(pp \to \ell^{\pm}\mu^{+}\mu^{-} + X)}{\sum_{\ell=e,\mu} \sigma(pp \to \ell^{\pm}e^{+}e^{-} + X)} ,$	
our-leptons	$R^{4l}_{\mu/e} = \frac{\sum_{\ell,\ell'=e,\mu} \sigma(pp \to \ell^{\pm} \ell'^{\mp} \mu^{+} \mu^{-} + X)}{\sum_{\ell=e,\mu} \sigma(pp \to \ell^{\pm} \ell'^{\mp} e^{+} e^{-} + X)}$	

SM: $R_{\mu/e}^{nl}$ =1 (up to negligible Higgs-leptons Yukawa ...)

Construct generic LFU tests & search for asymmetric rates of muons vs electrons in multi-leptons signals

Ratio observables

particularly useful/reliable: potentially minimize theor. & sys(exp) uncertainties (NLO QCD, loop-EFT, PDF ...)

di-lepton	$R^{2l}_{\mu/e} = \frac{\sigma(pp \to \mu^+\mu^- + X)}{\sigma(pp \to e^+e^- + X)} , \qquad \mathbf{X} \in \mathbf{our} \ \mathbf{se}$	elections
tri-lepton	$R^{3l}_{\mu/e} = \frac{\sum_{\ell=e,\mu} \sigma(pp \to \ell^{\pm}\mu^{+}\mu^{-} + X)}{\sum_{\ell=e,\mu} \sigma(pp \to \ell^{\pm}e^{+}e^{-} + X)} ,$	
our-leptons	$R^{4l}_{\mu/e} = \frac{\sum_{\ell,\ell'=e,\mu} \sigma(pp \to \ell^{\pm} \ell'^{\mp} \mu^{+} \mu^{-} + X)}{\sum_{\ell=e,\mu} \sigma(pp \to \ell^{\pm} \ell'^{\mp} e^{+} e^{-} + X)}$	

אר אין	$\xi_{e} \sim 1 + \delta(\Lambda)$	$\delta(\Lambda) \propto \frac{c^{\text{INT}} \cdot \sigma_{n\ell}^{\text{INT}} + c^{\text{NP}} \cdot \sigma_{n\ell}^{\text{NP}}}{\sigma_{n\ell}^{\text{SM}}}$	scalar tensor vector	$c^{ ext{INT}}$ 0 0 $V_{ij}/\Lambda_{ ext{TeV}}^2$	$c^{ m NP} \ S^2_{RR}/\Lambda^4_{ m TeV} \; , \ T^2_{RR}/\Lambda^4_{ m TeV} \; , \ V^2_{ij}/\Lambda^4_{ m TeV} \; .$	

LFNU ttµµ NP - MC sim of synthetic data

- Generate $O(10^4)$ values/realizations of $R^{nl}(exp)$

- $\chi^2 = \sum_{n=2,3,4} \frac{\left[R^{nl}(\Lambda) R^{nl}(\exp)\right]^2}{\left(\delta R^{nl}\right)^2}$
- For each realization determine Λ_{\min} that minimizes the χ^2 like test
- Obtain the the distribution $P(\Lambda_{min})$

95% CL bounds on LFNU ttll NP:

	95% bounds on Λ [TeV]					
\mathcal{L} [fb ⁻¹]	$\mathrm{NP}\Downarrow$	$\delta R^{n\ell}=25\%$	$\delta R^{n\ell} = 15\%$			
	$S_{RR} = 1$	0.9	1			
140	$T_{RR} = 1$	2.1	2.3			
	$V_{RR} = 1(-1)$	1.3(1.2)	1.6(1.3)			
	$S_{RR} = 1$	0.9	1.1			
300	$T_{RR} = 1$	2.2	2.4			
	$V_{RR} = 1(-1)$	1.4(1.2)	1.6(1.4)			
	$S_{RR} = 1$	1.7	1.9			
3000	$T_{RR} = 1$	3.7	4.2			
	$V_{RR} = 1(-1)$	2.5(2.2)	2.9(2.4)			

A > 1-2 TeV [current lumi]

$\Lambda > 2-4$ TeV [HL-LHC]

 Multi-leptons signals provide an excellent & rich testing ground of NP - in particular LFUV NP

@LHC13 & beyond

- good reasons to suspect TeV-scale NP/LFNU in 3rd gen fermion systems
- $(q_3q)(\ell)$ useful window into NP ...
- Flavor-blind signals to detect FC underlying NP

 Current LHC data can significantly improve existing bounds on bsll, bbll, tull & ttll contact terms (∈ heavy V', LQ's ...)

or discover tails of NP effects via multi-lepton signals searches

• Sensitivity to top - leptons (S,V,T ...) interactions (LFU or LFUV)

		@current LHC13	@HL-LHC
flavor-changing:	up to	Λ ~ 5 TeV	Λ ~ 7 TeV
flavor-diagonal:	up to	Λ ~ 2 TeV	Λ ~ 3 TeV

Backups

B-anomalies:

B-anomalies: ($R_{D(r)}$, $R_{K(r)}$): may be connected - SU(2) ...

b
$$\rightarrow$$
 sµµ/see: $R_{K^{(*)}} = \frac{Br(B \rightarrow K^{(*)}\mu^{+}\mu^{-})}{Br(B \rightarrow K^{(*)}e^{+}e^{-})} < 1 \ (\sim 4\sigma \ global \ significace)$

 $(+ dB/dq^2 + P_5' + \text{deviations in: } B_S \rightarrow \mu\mu, B^0 \rightarrow K^0\mu\mu, B^+ \rightarrow K^+\mu\mu, B_S \rightarrow \phi\mu\mu, B^0 \rightarrow K^{\star 0}\mu\mu, B^+ \rightarrow K^{\star +}\mu\mu)$

b
$$\rightarrow c\tau v/c\mu v/cev$$
: $R_{D^{(*)}} = \frac{Br(B \rightarrow D^{(*)}\tau v)}{Br(B \rightarrow D^{(*)}\mu v/ev)} > R_{D^{(*)}}(SM)$ (~ 3 σ tension)

Matching - underlying BSM scenarios (e.g., top-quark 4-Fermi):

Yukawa & vector-like couplings to quark-lepton pair:

Tree-level exchanges of the heavy R₂, U₁ LQ's (after Fierz):

$$\begin{aligned} \mathbf{V}_{\mathrm{LL}} \\ U_1 : \alpha_{\ell q}^{(1)} &= \alpha_{\ell q}^{(3)} = -\frac{xx^{\star}}{2M_{U_1}^2} \ , \\ R_2 : \alpha_{qe} &= -\frac{zz^{\star}}{2M_{R_2}^2} \ , \ \alpha_{\ell u} = \frac{yy^{\star}}{2M_{R_2}^2} \ , \ \alpha_{\ell equ}^{(1)} = 4\alpha_{\ell equ}^{(3)} = -\frac{yz}{2M_{R_2}^2} \\ \mathbf{V}_{\mathrm{RL}} \qquad \mathbf{V}_{\mathrm{LR}} \qquad \mathbf{S}_{\mathrm{RR}} \qquad \mathbf{T}_{\mathrm{RR}} \end{aligned}$$

Correlations among up-down sectors can be exploited to get an enhanced sensitivity

Example: gauge invariance relating top-bottom 4-Fermi:

$$\mathcal{O}_{lq}^{(1)}(pr31) = (\bar{\ell}_p \gamma_\mu P_L \ell_r) \cdot \left[(\bar{t} \gamma^\mu P_L u) + (\bar{b} \gamma^\mu P_L d) \right] ,$$

$$\mathcal{O}_{lq}^{(3)}(pr31) \supset (\bar{\ell}_p \gamma_\mu \tau^3 P_L \ell_r) \cdot \left[(\bar{t} \gamma^\mu P_L u) - (\bar{b} \gamma^\mu P_L d) \right] ,$$

$$\mathcal{O}_{qe}(pr31) = (\bar{\ell}_p \gamma^\mu P_R \ell_r) \cdot \left[(\bar{t} \gamma_\mu P_L u) + (\bar{b} \gamma_\mu P_L d) \right] .$$

$$V_{LL}(tu\ell\ell) = \alpha_{\ell q}^{(1)} - \alpha_{\ell q}^{(3)} \iff V_{LL}(bd\ell\ell) = -\alpha_{\ell q}^{(1)} - \alpha_{\ell q}^{(3)}$$
$$V_{RL}(tu\ell\ell) = V_{RL}(bd\ell\ell) = \alpha_{qe}$$

=> V_{LL} & V_{RL} top and bottom couplings are related (t -> u/c VS b -> d/s):

But caution: notice sign difference (V_{LL}) - important when considering the underlying heavy physics ...

Matching - underlying BSM scenarios (e.g., top-quark 4-Fermi):

Resulting 4-Fermi (our parameterization):

- R2-type scalar LQ: generates VRL, VLR (vector), SRR (scalar), TRR (tensor) 4-Fermi
- U₁-type vector LQ: no 4-Fermi interactions in up-sector (ttll,tull,tcll) ! ($V_{LL} = \alpha_{\ell_a}^{(1)}$

but generates bbll,bsll,bdll vector 4-Fermi for which $V_{LL} = \alpha_{\ell a}^{(1)} \oplus \alpha_{\ell a}^{(2)}$

(3)

$$V_{\text{LL}}$$

$$U_{1}: \alpha_{\ell q}^{(1)} = \alpha_{\ell q}^{(3)} = -\frac{xx^{\star}}{2M_{U_{1}}^{2}} ,$$

$$R_{2}: \alpha_{qe} = -\frac{zz^{\star}}{2M_{R_{2}}^{2}} , \ \alpha_{\ell u} = \frac{yy^{\star}}{2M_{R_{2}}^{2}} , \ \alpha_{\ell equ}^{(1)} = 4\alpha_{\ell equ}^{(3)} = -\frac{yz}{2M_{R_{2}}^{2}}$$

$$V_{\text{RL}} \qquad V_{\text{LR}} \qquad S_{\text{RR}} \qquad T_{\text{RR}}$$

Generic tuµµ NP (also applicable to tuee ...)

"cut & count" : @27 & 100 TeV proton collider

34

"cut & count" : 95% CL bounds on tupp NP

 $(\mu\mu 1b): pp
ightarrow \mu^+\mu^- + j_b + X$

	Operator	$tu\mu\mu$ -	4-Fermi case	$tc\mu\mu$ 4-Fermi case		
	Coupling	$m_{\mu^+\mu^-}^{\min}$ [GeV]	$\Lambda_{\min}(95\% \ CL) \ [\text{TeV}]$	$m_{\mu^+\mu^-}^{\min}$ [GeV]	$\Lambda_{\min}(95\% \ CL) \ [\text{TeV}]$	
	$S_{RR} = 1$		$2.8^{+0.1}_{-0.1}$		$1.0^{+0.1}_{-0.1}$ [EFT?]	
$\mathcal{L} = 140 \text{ fb}^{-1}$	$T_{RR} = 1$	1500	$5.0^{+0.1}_{-0.2}$	1000	$1.8\substack{+0.1\\-0.1}$	
	$V_{RR} = 1$		$3.2^{+0.1}_{-0.1}$		$1.1\substack{+0.1\-0.1}$	
	$S_{RR} = 1$		$4.1^{+0.1}_{-0.2}$		$1.3^{+0.1}_{-0.1}$ [EFT?]	
$\mathcal{L}=3000~{ m fb}^{-1}$	$T_{RR} = 1$	2000	$7.1^{+0.3}_{-0.3}$	1500	$2.4\substack{+0.1 \\ -0.1}$	
	$V_{RR} = 1$		$4.7^{+0.2}_{-0.2}$		$1.5^{+0.1}_{-0.1}$ [EFT?]	

 $(e\mu\mu): pp \to e\mu^+\mu^- + X$

	Operator	$tu\mu\mu$	4-Fermi case	tcµµ 4	4-Fermi case
	Coupling	$m_{\mu^+\mu^-}^{ t min}$ [GeV]	$\Lambda_{\min}(95\% \ CL) \ [\text{TeV}]$	$m_{\mu^+\mu^-}^{\tt min}$ [GeV]	$\Lambda_{\min}(95\% \ CL) \ [\text{TeV}]$
	$S_{RR} = 1$		$2.3\substack{+0.0\\-0.1}$		$0.9^{+0.0}_{-0.0}$ [EFT?]
$\mathcal{L} = 140 \ \mathrm{fb}^{-1}$	$T_{RR} = 1$	1500	$4.1^{+0.1}_{-0.1}$	1000	$1.7^{+0.1}_{-0.1}$
	$V_{RR} = 1$		$2.7\substack{+0.0 \\ -0.1}$		$1.1^{+0.0}_{-0.0}$
	$S_{RR} = 1$		$3.5^{+0.1}_{-0.1}$		$1.1^{+0.1}_{-0.1}$
$\mathcal{L}=3000~{ m fb}^{-1}$	$T_{RR} = 1$	1500	$6.3\substack{+0.2 \\ -0.3}$	1000	$2.1\substack{+0.1\\-0.1}$
	$V_{RR} = 1$		$4.1^{+0.1}_{-0.2}$		$1.3^{+0.1}_{-0.1}$

"cut & count"

 Given a signal yield & background uncertainty, calculate the expected number of standard deviations (the Z-value) from the backgroundonly hypothesis (using BinomialExpZ by RooFit)

- Then <u>find an optimized selection m^{min}_u(µµ)</u> by maximizing the expected Z-value for each signal hypothesis.
- Calculate the p-value (using BinomialExpZ by RooFit) of the background-only and background+signal hypotheses for each point and then perform a CLs test to determine the 95% Confidence Level (CL) exclusion values for Λ .

Monte Carlo simulation of synthetic data

- Generate (synthetic) realizations of a set of experimental measurements y_{exp} around $y_{exp}(x_{SM})$, assuming some underlying overall uncertainty
 - obtain the expected distribution of the data
 P(x) assuming no NP ...

"Inject" NP into the data (into y_{exp}) and choose a "metric" to test the no NP hypothesis for each realization.

- find x_{best-fit} (that minimizes the test-metric) for each realization
- obtain the distribution P(x_{best-fit})
- x_{best-fit} depends on NP parameters (Λ) ...

P(x_{best-fit}) allows us to obtain the predicted sensitivities & bounds ...

High-P_T correlated tests of lepton-universality

in pp \rightarrow leptons+jets

@LHC & beyond

NP: (q₃q)(*u*) 4-Fermi terms

NP: SU(2) - triplet & singlet 4-Fermi (vector) opts

$$\mathcal{O}_{lq}^{(3)}(prst) = \left(\bar{l}_p \gamma_\mu \tau^I l_r\right) \left(\bar{q}_s \gamma^\mu \tau^I q_t\right) \\ \mathcal{O}_{qe}(prst) = \left(\bar{e}_q \gamma_\mu e_r\right) \left(\bar{q}_s \gamma^\mu q_t\right) ,$$

Recall: $V_{LL} \propto \alpha_{lq}^{(3)} \& V_{RL} \propto \alpha_{qe}$

These 2 opts may be responsible for NP effects in:

 $(mnp)_{\ell\ell} : pp \to \ell_i^+ \ell_i^- + m \cdot j + n \cdot j_b + p \cdot t$ $(mnp)_\ell : pp \to \ell_i^\pm + m \cdot j + n \cdot j_b + p \cdot t + \not\!\!\!E_T$

NP: SU(2) - triplet & singlet 4-Fermi (vector) opts

e.g.,

 $\mathcal{O}_{la}^{(3)}(prst) = \left(\bar{l}_p \gamma_\mu \tau^I l_r\right) \left(\bar{q}_s \gamma^\mu \tau^I q_t\right)$ $\mathcal{O}_{ae}(prst) = (\bar{e}_a \gamma_\mu e_r) \left(\bar{q}_s \gamma^\mu q_t \right) ,$

Recall: $V_{LL} \propto \alpha_{lq}^{(3)} \otimes V_{RL} \propto \alpha_{qe}$

The LFNU $\chi^2 - like$ test-metric:

$$\chi^{2} = \sum_{X} \frac{\left[T_{\ell\ell}^{X}(\Lambda) - T_{\ell\ell}^{X, \exp}\right]^{2}}{\left(\delta T^{X}\right)^{2}} + \sum_{Y} \frac{\left[T_{\ell}^{Y}(\Lambda) - T_{\ell}^{Y, \exp}\right]^{2}}{\left(\delta T^{Y}\right)^{2}}$$

 $X, Y \in (m, n, p)$ denote the $\ell \ell$ and single ℓ channels

T's are ratio observables sensitive to LFNU ...

$$T_{\ell\ell}^{mnp} = \frac{\sigma_{\ell\ell}^{mnp}}{\sigma_{ee}^{ee}} \quad , \quad T_{\ell}^{mnp} = \frac{\sigma_{\ell}^{mnp}}{\sigma_{e}^{mnp}}$$
$$\sigma_{ll,l}^{mnp} \in ((mnp)_{\ell\ell} : pp \to \ell_i^+ \ell_i^- + m \cdot j + n \cdot j_b + p \cdot t)$$
$$(mnp)_{\ell\ell} : pp \to \ell_i^\pm + m \cdot j + n \cdot j_b + p \cdot t + \not{E}_T$$

normally distributed around the average T(SM)=1

$$T_{\ell\ell}^{X, \exp} = \mathcal{N}\left(1, \left(\delta T^X\right)^2\right), \ T_{\ell}^{Y, \exp} = \mathcal{N}\left(1, \left(\delta T^Y\right)^2\right)$$

overall uncertainties

$$\delta T^{X,Y} = \sqrt{\left(\delta T^{X,Y}_{\texttt{stat}}\right)^2 + \left(\delta T^{X,Y}_{\texttt{sys}}\right)^2}$$

Results - sensitivities :

Demonstrate on QCD-generated processes (therefore dominant):

$$(010)_{\mu\mu} : pp \to \mu^{+}\mu^{-} + j_{b}$$

(110)_{\mu\mu} : pp \to \mu^{+}\mu^{-} + j + j_{b}
(020)_{\mu\mu} : pp \to \mu^{+}\mu^{-} + 2 \cdot j_{b}
(002)_{\mu\mu} : pp \to \mu^{+}\mu^{-} + t\bar{t} ,

Sensitivity depends on lower cut on dilepton invariant mass ...

Results - sensitivities :

Demonstrate on QCD-generated processes (therefore dominant):

$$(010)_{\mu\mu} : pp \to \mu^{+}\mu^{-} + j_{b}$$

(110)_{\mu\mu} : pp \to \mu^{+}\mu^{-} + j + j_{b}
(020)_{\mu\mu} : pp \to \mu^{+}\mu^{-} + 2 \cdot j_{b}
(002)_{\mu\mu} : pp \to \mu^{+}\mu^{-} + t\bar{t} ,

Sensitivity depends on lower cut on dilepton invariant mass ...

	95% <i>CL</i> bounds: $\Lambda_{\mathcal{O}_{lq}^{(3)}(2233)} \left(\Lambda_{\mathcal{O}_{qe}(2233)} \right)$ [TeV]						
	$\mathcal{L} = 140 \; [{\rm fb}]^{-1}$		$\mathcal{L} = 300 \; [{\rm fb}]^{-1}$		$\mathcal{L} = 3000 \; [\text{fb}]^{-1}$		
	$m_{\mu\mu}^{\min} = 300 \text{ GeV}$		$m_{\mu\mu}^{\min} = 400 \text{ GeV}$		$m_{\mu\mu}^{\min} = 700 \mathrm{GeV}$		
	$\eta_f = +1$	$\eta_f = -1$	$\eta_f = +1$	$\eta_f = -1$	$\eta_f = +1$	$\eta_f = -1$	
$\delta T \sim 10\%~({\rm case}~1)$	3.4(2.6)	3.2(4.2)	4.1(3.1)	3.9(4.9)	6.3(4.4)	6.0(6.4)	
$\delta T \sim 15\%$ (case 2)	3.0(2.5)	2.7(3.8)	3.7(3.0)	3.3(4.5)	5.8(4.2)	5.5(5.9)	
$\delta T \sim 20\%$ (case 3)	2.6(2.4)	2.3(3.4)	3.3(2.9)	2.9(4.2)	5.1(4.1)	4.7(5.5)	

 $\Lambda \sim 3 \text{ TeV}$ [current lumi & m_{min}($\mu\mu$) > 300 GeV] $\Lambda \sim 5-6 \text{ TeV}$ [HL-LHC & m_{min}($\mu\mu$) > 700 GeV]

EFT-validity

Two "measures" to consider:

$$\sigma^{NP}(g,\Lambda,m_{\ell\ell}) = \frac{g^2}{\Lambda^2} \cdot \sigma^{SM \times NP}(m_{\ell\ell}) + \frac{g^4}{\Lambda^4} \cdot \sigma^{NP \times NP}(m_{\ell\ell})$$

$${\cal R}_{\Lambda}\equiv {\hat s\over \Lambda^2}$$

Addresses the validity of the specific calculation within the EFT framework - depends on the details of the underlying heavy physics and the process at hand

$${\cal R}_{\Lambda/g}\equiv {\hat s\over \Lambda^2/g^2}$$

The EFT expansion param - the expansion of the effective Lagrangian at leading order in g/A

EFT-validity

Two "measures" to consider:

$$\sigma^{NP}(g,\Lambda,m_{\ell\ell}) = rac{g^2}{\Lambda^2} \cdot \sigma^{SM imes NP}(m_{\ell\ell}) + rac{g^4}{\Lambda^4} \cdot \sigma^{NP imes NP}(m_{\ell\ell})$$

$${\cal R}_{\Lambda}\equiv {\hat s\over \Lambda^2}$$

Addresses the validity of the specific calculation within the EFT framework - depends on the details of the underlying heavy physics and the process at hand

$${\cal R}_{\Lambda/g}\equiv {\hat s\over \Lambda^2/g^2}$$

The EFT expansion param - the expansion of the effective Lagrangian at leading order in g/A

SM×NP interference term $\propto O(R_{\Lambda/g})$ NP×NP term $\propto O(R_{\Lambda/g}^2)$

 $R_{\Lambda/g} < 1$ naively indicate the regime of validity of the EFT prescription & the potential effects from higher dim opts can be assessed from $R_{\Lambda/g}$ **EFT-validity**

Consider bounds (Λ_{min}) obtained on the scale Λ of an s-channel underlying NP pp $\rightarrow NP \rightarrow l^+l^-$; $\hat{s} = m_{ll}$

collider signatures of bbll & bsll vector contact terms

$$\mathcal{L}_{eff} = rac{g^2}{\Lambda^2} \sum_{i,j=L,R} \eta_{ij} (\bar{b}_i \gamma_\mu b_i) (\bar{\ell}_j \gamma^\mu \ell_j)$$

$$\sigma(m_{\ell\ell}) = \sigma^{SM}(m_{\ell\ell}) + \frac{g^2}{\Lambda^2} \cdot \sigma^{SM \times NP}(m_{\ell\ell}) + \frac{g^4}{\Lambda^4} \cdot \sigma^{NP \times NP}(m_{\ell\ell})$$

I

$$\sigma(m_{\ell\ell}) = \sigma^{SM}(m_{\ell\ell}) + \frac{g^2}{\Lambda^2} \cdot \sigma^{SM \times NP}(m_{\ell\ell}) + \frac{g^4}{\Lambda^4} \cdot \sigma^{NP \times NP}(m_{\ell\ell})$$

selections: exactly one b-jet (pp \rightarrow ee/µµ + j_b) & m_{\parallel} lower cut , m_{\parallel} > O(TeV)

 m_{\parallel} - important discriminating variable

LFNU $tt \mu \mu$ NP - MC sim of synthetic data

LFNU χ^2 - like test /metric

$$\chi^{2} = \sum_{n=2,3,4} \frac{\left[R^{nl}(\Lambda) - R^{nl}(\exp)\right]^{2}}{\left(\delta R^{nl}\right)^{2}}$$

 $R^{nl}(\Lambda) = expected from NP$ in the data $R^{nl}(exp) = expected exp.$ measurements of R $\delta R^{nl} = 15\%$ or 25%; overall exp + theor uncertainty (sys + stat)

For the purpose of extracting a bound, assume:

no NP in the data, $R^{nl}(exp)$ normally distributed & at least 5 events ("adjust" $m_{min}(u)$...)

LFNU ttµµ NP - MC sim of synthetic data

- Generate $O(10^4)$ values/realizations of $R^{nl}(exp)$

$$\chi^2 = \sum_{n=2,3,4} rac{\left[R^{nl}(\Lambda) - R^{nl}(extsf{exp})
ight]^2}{\left(\delta R^{nl}
ight)^2}$$

- For each realization determine Λ_{\min} that minimizes the χ^2 like test
- Obtain the the distribution $P(\Lambda_{min})$

distribution of best-fitted Λ (Λ_{min}) of the tensor (T_{RR}) opt which minimizes the χ^2 - like test

