

Searches in CMS for long-lived particles and other non-conventional signatures

Celia Fernández Madrazo¹ on behalf of the CMS Collaboration

¹ Instituto de Física de Cantabria (UC-CSIC)

July 2022

Non-conventional signatures and long-lived particles

New physics could be hiding in BSM models which predict the existence of particles that give rise to non-conventional signatures.

They are atypical topologies that offer **appealing and challenging searches** where we have to opportunity to improve:

- The estimation of **non-standard backgrounds**
- Loss of efficiency in reconstruction
- Reduced trigger performance

Long-lived particles LLP (high lifetimes) may decay away from the interaction point, so if we study their decay products:

→ Displaced particles

... if they are **Fractionally charged particles FCP** they are expected to leave less energy in the detector:

→ Low ionizing particles

... and many more that cannot be covered in this talk!

CMS searches by non-conventional signature

CMS has performed many searches that can be classified according to the non-conventional signature that is studied.

<u>Challenges:</u> Inclusivity, lower masses, momentum, high displacement (in case of LLPs)...

→ 5 of the most recent ones with **Run 2 data** are summarized in this talk:

	Analysis	Signature	Displacement	Mass
CI	MS-EXO-18-003	Displaced (di)leptons	Within pixel tracker	> 30 GeV
	WS-EXO-20-014	Displaced dimuon (with vertex)	Within pixel tracker	> 200 MeV
	MS-EXO-21-006	Displaced dimuon (with vertex)	Tracker + muon system	> 10 GeV
	MS-EXO-20-003	Displaced jets + Z	Within tracker	> 15 GeV
CI	MS-EXO-19-006	Low ionizing particles	Outside of CMS	> 100 GeV

New result!

(Searches for Heavy Neutral Leptons (HNLs) not covered here but in the talk by Basile Vermassen today)

LLPs decaying to displaced leptons

Inclusive search for long-lived particles decaying to displaced leptons

- Leptons **not required** to originate from a **common vertex**
- $\mu\mu$, ee and e μ final states
- Trigger and event selection exclusively on displaced leptons
- Used leptons |d₀| as main discriminant (up to 10 cm)

Background:

- **X** Mismeasurements, leptonic tau decays, HF mesons estimated from data-driven ABCD method with both lepton |d₀|. Corrections applied to account for |d₀| correlation.
- Cosmic muons, material interactions and LL SM hadrons largely rejected by analysis selection.

LLPs decaying to displaced leptons

Exclusion limits set on RPV SUSY, GMSB SUSY and BSM Higgs models:

Max. sensitivity for $m_t = 1500$ GeV, $c\tau = 2$ cm Similar limits than for $t \rightarrow dl$ ($l = e, \mu$ and τ)

Max. sensitivity for $m_1 = 680$ GeV, $c\tau = 2$ cm

Max. sensitivity for $c\tau = 1-2$ cm

LLPs decaying to a pair of muons

Inclusive search for long-lived particles decaying to muons at distances ranging from few tens of um to several meters

Topology: pair of OS charged muons originating from a common displaced vertex.

Splitted in three categories that are optimized separately

Triggered with muons only in muon chambers (No vertex constraint).

Background:

- → Cosmics, multijets, low-mass... suppressed with selection
- → Prompt misreconstruction estimated from control region with $|\Delta\Phi(p_T^{\mu\mu}, L_{xv})| > 3\pi/4$.
- → Nonprompt estimated from control region with SS dimuon vertices

LLPs decaying to a pair of muons

Exclusion limits set on a model with BSM heavy scalar decaying to LLPs and on a Hidden Abelian Higgs Model (HAHM) with dark photons Z_D:

BR of Higgs to Z_D of 1% excluded for Z_D masses from 20 to 60 GeV and lifetimes from few tens of μm to 100 m

LLPs decaying to muons with high rate triggers

Search for long-lived particles decaying to muons with high rate triggers

Topology: pair of OS charged muons originating from a common vertex.

High rate triggers (2 OS muons):

- ✓ Loose requirements, lower mass and muon p_T
- X Limited information to be used
- X Restricted to pixel tracker

Optimized selection to suppress background from cosmics, PU, QCD, misreconstruction, material interactions, B hadrons...

Event categorization as a function of transverse distance L_{xy} , dimuon $p_T^{\mu\mu}$ and isolation.

Simultaneous signal + background fit in mass windows where each contribution is parametrized by analytical functions.

LLPs decaying to muons with high rate triggers

Upper limits set on a model with the Higgs boson decaying to dark photons Z_D and LL scalar resonances arising from b hadron decays ($h_b \rightarrow \Phi X$):

Higgs decays into LLP with associated Z

Search for Higgs boson decays into long-lived particles in associated Z boson production

Displaced jets are tagged with **track level information** variables. (see CMS-EXO-16-003, <u>10.1016/j.physletb.2018.03.019</u>)

- Drell-Yan and tt/single top are estimated from control regions while other bkgs from MC.
- Validated in 7 VS_i regions by inverting jet tagging cuts
- Signal region defined as Ni_{dis} ≥ 2

Search for fractionally charged particles

Search for fractionally charged particles

Energy deposited by a particle per unit length:

$$-\left\langle \frac{dE}{dx} \right\rangle = K \overline{Q^2} \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \left(\frac{2m_e (c\beta\gamma)^2 T_{max}}{I^2} \right) - \beta^2 \right]$$

Q < 1 → Low ionization power → Different dE/dx spectrum

Signature: High p_T track matched to a muon track:

The number of tracker hits with low dE/dx N_{hits}low dE/dx is expected to be higher and it is used as main discriminant

Background arises mainly from muons from W or Z decays:

- → Detector effects (radiation damage, pixel inefficiencies, edge hits...) mitigated with track/hit selection
- → Modelled with a fitted **binomial distribution** to extrapolate bkg from low to high N_{hits}low dE/dx

Search for fractionally charged particles

Exclusion limits set on the cross-section of FCPs production in Drell-Yan:

Best limits are obtained for intermediate charges

Excluded 2/3e for σ above 0.283 fb and masses of 636 GeV

Run 1 results from CMS for 2/3e and 1/3e FCPs not shown

Results with Run 1* uncovered an issue with the FCPs simulation in the muon chambers, now corrected for Run 2.

- No impact on Sig vs Bkg method (from tracker)
 - Affects selection efficiency in trigger/offline reconstruction for charges of 1/3e
 - → Errata for Run 1 analysis are coming
- → Run 2 PAS will be held until errata is submitted

^{*} PHYSICAL REVIEW D 87, 092008 and JHEP07 (2013) 122

Overview of CMS long-lived searches

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

Moriond 2022

Summary

- Non conventional signatures offer the possibility to perform new appealing searches while looking at unexplored regions of the phase space
- * They may provide a handle to reduce background and gain sensitivity
 - ... but at the same time are challenging to detect and analyse
- x Five of the latest non-conventional searches were presented
 - ... and more exotic searches are still yet to come with Run 2 data
- X Run 2 analyses have exploited all the tools available. There is room for **improvement towards Run 3** and a huge effort ongoing:
 - * Improving triggers
 - **X** Optimizing offline reconstructions
 - Designing new analyses techniques

More results available in Public CMS Exotica results page

... thank you for your attention

Backup slides

EXO-18-003: Displaced lepton selection

Displaced lepton selection:

- **x** Minimum p_T:
 - e μ : Electrons p_T > 42 (45) GeV and muons p_T > 40 (45) GeV in 2016 (2017 + 2018)
 - ee: $p_T > 65$ (75) GeV in 2016 (2017 + 2018)
 - $-\mu\mu$: p_T > 35 (45) GeV in 2016 (2017 + 2018)
- $|\eta|$ < 1.5 (1.44) for muons (electrons)
- κ Removed η-Φ regions with no fully functional pixel layers
- X Tight ID
- x Isolation (PU corrected)
- X Cosmic muon rejection:
 - $-\cos(\alpha) > -0.99$
 - Δt (upper, lower) > 20 ns
- $\times \Delta R > 0.2$
- × Reject vertices in tracker material with ($χ^2$ /ndof) _{vertex} < 20
- x 100 μ m < $|d_0|$ < 10 cm

Signal efficiency (m_t = 1500 GeV) over generated events

eμ SR					
	200 GeV	1000 GeV	1800 GeV		
0.1 cm	2.0%	4.5%	4.5%		
1 cm	3.5%	7.8%	8.7%		
10 cm	1.0%	2.6%	3.3%		
100 cm	0.05%	0.12%	0.15%		
ee SR					
	200 GeV	1000 GeV	1800 GeV		
0.1 cm	0.45%	2.1%	2.1%		
1 cm	0.59%	2.8%	3.3%		
10 cm	0.11%	0.59%	0.76%		
100 cm	0.002%	0.01%	0.02%		
μμ SR					
	200 GeV	1000 GeV	1800 GeV		
0.1 cm	1.4%	2.5%	2.5%		
1 cm	3.0%	5.5%	5.8%		
10 cm	1.4%	3.0%	3.6%		
100 cm	0.10%	0.22%	0.31%		

EXO-18-003: Signal region events

The number of observed and estimated background events in each channel and SR, with a representative signal overlaid is shown:

EXO-18-003: Additional results

Limits on RPV SUSY are set separately for top squarks decays into d and b quarks with very similar results:

C. F. Madrazo | ICHEP 2022

EXO-21-006: Trigger performance

High level triggers reconstruct the muons only in the muon chambers. Reconstruction is seeded by L1 dimuon triggers where the p_T assignment assumes that the muon was originated in the beamspot.

L1 thresholds were reached from 2016 to 2018.

EXO-21-006: Background studies

Misreconstruction estimated from $|\Delta \Phi(p_T^{\mu\mu}, L_{xy})| > 3\pi/4$ as it shows symmetric behavior in prompt background.

Non-prompt contribution (mainly QCD) is studied by inverting isolation cut.

- $|\Delta\Phi(p_T^{\mu\mu}, L_{xy})|$ not symmetric
- Low mass for associated tracker muons

(Control regions with pairs inverting MuonSystem-to-Tracker association)

EXO-21-006: Observed events

Pairs reconstructed in only in muon chambers

Hybrid pairs

Pairs reconstructed in tracker + muon chambers

EXO-20-014: High rate triggers and selection

- → Events ate **preselected at L1** and required to pass **at least one of 3 criteria**:
 - **x** Two L1 muons with opposite charges, $p_T > 4$ (4.5) GeV in 2017 (2018) and $\Delta R < 1.2$
 - **x** Two OS L1 muons with $|\mathbf{\eta}|$ < 1.4 and ΔR < 1.4
 - **x** Two L1 muons with $p_T^{\mu 1} > 15$ GeV and $p_T^{\mu 1} > 7$ GeV

Only preselected events with muons with $p_T > 3$ GeV and $|\eta| < 2.4$ are retained.

→ OS muon selection:

- **x** Vertex with $L_{xy} < 11$ cm, $\Delta x < 0.05$ cm, $\Delta y < 0.05$ cm, $\Delta z < 0.1$ cm and $(\chi^2/\text{ndof})_{\text{vertex}} < 5$
- **x** Muons with $(\chi^2/ndof)_{track} < 3$ and $N_{layers} > 5$
- First (second) muon pair in the event:
 - Relative tracker isolation < 0.1 (0.2) and no jet within ΔR < 0.3
 - $-|\Delta\Phi(p_T^{\mu\mu}, SV)| < 0.02 (0.1)$
 - $-|\Delta\Phi(\mu_1, \mu_2)| < 2.8$
 - $-\log_{10}(|\Delta\eta_{\mu\mu}|/|\Delta\Phi_{\mu\mu}|) < 1.25$
 - Consistent $N_{pixel hits}$ for $L_{xy} > 3$ cm
 - Veto to vertices within 0.5 cm of detector material
 - $|d_{xy}|/\sigma_{dxy} > 2 (1)$
 - $|d_{xy}|/(L_{xy} m_{\mu\mu} / p_T^{\mu\mu}) > 0.10 (0.05)$

Total signal efficiency from 55% to 75%

EXO-20-014: Additional results

Limits on LL resonances in B hadron decays.

$$(c\tau = 1, 100 \text{ mm})$$

Limits on Higgs boson decays to dark photons.

$$(c\tau = 1, 100 \text{ mm})$$

Limits on Higgs boson decays to dark photons with assumed B(Z_D→µµ).

$$(c\tau = 1, 100 \text{ mm})$$

EXO-20-003: Displaced jet tagging variables

Displaced jet tagging variables:

$$\alpha_{\rm max} < 0.45$$

$$oldsymbol{lpha}_{vtx_i} = rac{\sum_{tracks \in vtx_i} p_T^{tracks}}{\sum_{tracks} p_T^{tracks}}$$

$$\alpha_{\mathsf{max}} = \mathit{MAX}\{\alpha_{\mathit{vtx_i}}, \ \alpha_{\mathit{vtx_i}}, \ \ldots\}$$

EXO-20-003: Additional results

Exclusion limits set on the Higgs boson branching fraction to a pair of LL scalars in two scenarios, S→dd and S→bb. Results do not have a strong dependence on quark flavor:

EXO-19-006: FCPs simulation in muon system

- X Simulation in tracker is done with Geant 4 which accounts for energy loss of FCPs.
- For the muon system simulation, charge was hardcoded as q=e.

→ Solution: Scaled the distance between two FCP interactions by the square of the charge

Charge 1e

Charge 1/3e

Gap

#ele2

#ele2

#ele2