

Search for the X17 particle with the MEG-II apparatus

Hicham Benmansour, INFN Pisa on behalf of the <u>MEG-II collaboration</u>

ICHEP XLI, Bologna, July 7th 2022

The Beryllium Anomaly

Standard physics or new boson?

Phys. Rev. C 104, 044003

- Excess in IPC background at 115° angular opening: >6 σ
- Possible explanation: a 16.84 MeV neutral boson (X17?)
- Other indirect searches (NA64, NA48/2): no evidence for X17 but strong constraints

 Phys. Rev. D, 101:071101
 Phys. Lett. B 746, 178

• Can the measurement be performed with an independent setup, the MEG-II apparatus?

- Hint for the production of a neutral, 17 MeV boson, potential mediator of a fifth force: X17
- Need for experimental confirmation: MEG-II has all elements to carry out the measurement
 - ----> Reproduction of excess?
 - ---> Better invariant mass resolution
 - ---> Production in full solid angle
- First « X17 » data was taken by MEG-II

The MEG-II experiment

- MEG-II experiment searches for charged lepton flavour violating decay: $\mu \longrightarrow e\gamma$
- 1 order of magnitude sensitivity improvement wrt MEG: $BR(\mu \rightarrow e\gamma) \rightarrow 6 \times 10^{-14}$ <u>See Renga's talk at ICHEP tomorrow</u>

• The new MEG-II highly performing spectrometer can be used for X17-boson search:

07-07-2022

The Cockcroft-Walton accelerator

- <u>LXe calibration</u>
 - MEG-II Cockcroft-Walton accelerator: used for calibration of LXe calorimeter
 - Proton beam impinging on Li target (440 keV resonance): 17.6 MeV γ line
- <u>X17 search</u>

Max proton current and energy: 100 $\mu A \: and \: 1.1 \: \, MeV$

 \rightarrow ideal for X17 search (1 MeV resonance and 18.15 MeV γ line)

p+Li cross-section

The new target region

- 400 µm-thickness carbon fiber vacuum chamber to minimize multiple scattering
- 5 μ m LiF on 10 μ m copper substrate (by INFN Legnaro)
- 2 μ m LiPON (*) on 25 μ m copper substrate (by PSI)
- Target-supporting and heat-dissipating copper structure attached to CW nose

(*) Lithium phosphorus oxynitride (Li_{3-x}PO_{4-y}N_{x+y})

07-07-2022

The X17 search with MEG-II

7

Reduced magnetic field and beam tuning

• $\mu \longrightarrow e\gamma$ search relies on 52.8 MeV positron search with default magnetic field (1.27T at COBRA center)

- for X17: energies ~ 6 times lower \longrightarrow scaling of the field by a factor 0.15
- CW tuned using a quartz target: proton-induced fluorescence in the quartz, visible emission
- Tuning made varying 3 dipolar fields along the beamline to center the beam
 beam spot centered and covering the Li area

megCam - COBRA OFF

CCD camera - COBRA ON

The X17 search with MEG-II

Gamma detectors

• Two gamma detectors

-> Understanding of background

Stability monitoring

• Signal normalisation

Bismuth Germanate (BGO) crystal matrix (4x4)

Lanthanum Bromide (LaBr3) crystal

First data taking

- With all elements mentioned above, first X17 data taking period last February
- X17 runs from February 10th to February 22nd: sample of 90 M events
 10-17: LiF target (55 M)
 17-22: LiPON target (35 M)
- Objectives:
 Objectives:
 define optimal experimental setup and final TDAQ configuration have a complete understanding of the backgrounds develop reconstruction algorithm estimate sensitivity
 - Different TDAQ configurations have been studied and data in different conditions were taken
 - ---> CDCH multiplicity requirement + 1 pTC hit extensively used
 - \longrightarrow CW current ranging from 1 to 5 μ A (up to 10 μ A for short periods)
 - Online data suppression: factor 5 data taking speed increase
 >100 Hz event rate recording

Sensitivity estimate

 $BR(X) = 6 \times 10^{-6} \longrightarrow 1 \text{ X17 every } 1.7 \times 10^5 \text{ Li-}\gamma$ $BR(\text{IPC}) = 3 \times 10^{-3}$

• Assuming IPC as main background

 $5\sigma \sim O(500 \text{ X17})$

- Significance in already taken data is being evaluated model
 depending on that, potential new data taking
- <u>Additional EPC Background</u> and <u>Pair Reconstruction</u>:
 determining factors for precise sensitivity estimate
- Work ongoing:
 solid angle acceptance
 trigger acceptance
 trigger acceptance

Monte-Carlo simulation

A first look at the data sample

• A first analysis was carried out

Pair event display from LiPON data

Conclusion and outlook

Anomalous excess observed in the angular correlation of $^{7}\text{Li}(p, e^+e^-)^8\text{Be}$ by the Atomki collaboration

Potential new boson X17

- The MEG-II collaboration has designed, tested and built all the elements to perform the X17 search in different conditions with respect to Atomki Better understanding of the X17 anomaly
- Data are currently under analysis
 - Need for a performant pair reconstruction algorithm
 - EPC and reconstruction efficiency crucial to determine significance
- If needed, additional data can be taken early 2023
 - Potential optimization of target and surrounding region, trigger and DAQ configurations

Thank you for your attention!

Hicham Benmansour, INFN Pisa on behalf of the <u>MEG-II collaboration</u>

hicham.benmansour@pi.infn.it

ICHEP XLI, Bologna

The X17 search with MEG-II

Backup slides

ICHEP XLI, Bologna

The X17 search with MEG-II

Development of pair reconstruction algorithm

- In MEG-II, track finding is optimized for positrons
- Current effort to identify both e+ and e-
- Very first algorithm is already running based on MEG II track finding: X17-dedicated track finder is under development

