Constraining axion couplings with the JUNO detector

Newton Nath
INFN Bari, Italy

In collaboration with: F. Capozzi, G. Lucente, M. Giannotti, A. Mirizzi
arXiv: 2207.0xxxx (in preparation)

ICHEP 2022
09/07/2022
Why axions?
Fig. 1. Many extensions of the Standard Model predict additional massive bosons, beyond the W, Z, and Higgs bosons of the Standard Model. They

[Chadha-Day, Ellis, Marsh, Sci.Adv. 8 (2022)]
Why axions?

Hunts for axions are growing with the technologically advanced experiments.

Fig. 1. Many extensions of the Standard Model predict additional massive bosons, beyond the W, Z, and Higgs bosons of the Standard Model. They

[Chadha-Day, Ellis, Marsh, Sci.Adv. 8 (2022)]
Why axions?

Hunts for axions are growing with the technologically advanced experiments.

Massive bosons (integer spin)
- Ultralight bosons
- Moduli and dilatons
- Scalars (spin 0, CP even)
- Vectors (spin 1)

Theory
- Strong CP problem

Cosmology
- Cold DM candidate

Axions
- ALPs

Astrophysics
- Anomalous stellar cooling
- UHE γ transparency

Fig. 1. Many extensions of the Standard Model predict additional massive bosons, beyond the W, Z, and Higgs bosons of the Standard Model. They

[Chadha-Day, Ellis, Marsh, Sci.Adv. 8 (2022)]

Credits: I. G. Irastorza

NN@ICHEP 2022
Strong CP problem

- The QCD Lagrangian:

\[\mathcal{L}_{\text{QCD}} = \sum_q \bar{q} \left(i \slashed{\partial} - m_q e^{i \theta q} \gamma^5 \right) q - \frac{1}{4} G_{\mu\nu}^a G^{a\mu\nu} + \theta \frac{g_s^2}{32\pi^2} G_{\mu\nu}^a \tilde{G}^{a\mu\nu} \]

- \(\theta \)-term is a total derivative and does not affect the classical EoM. But, it has important effects on the quantum theory.

- It is the difference \(\bar{\theta} = \theta - \theta_q \) has physical meaning

- Non-zero \(\bar{\theta} \)-term has observational consequences to the neutron electric dipole moment \(d_n \)

\[d_n = (2.4 \pm 1.0) \bar{\theta} \times 10^{-3} \text{ e fm} \]

- At present \(d_n \) is constrained to \(|d_n| < 1.8 \times 10^{-13} \text{ e fm} \) (at 90% C.L.)

Strong CP problem: “Experimentally \(\bar{\theta} \lesssim 10^{-10} \), why is CP-violation so much suppressed in strong interactions?”
The axion

- To solve the problem, Peccei Quinn introduced a global $U(1)_{PQ}$ symmetry to the QCD

- This $U(1)_{PQ}$ symmetry would be spontaneously broken at a high energy scale f_a

- Such an spontaneously broken symmetry implied a new pNG boson, “Axion”

- Under the symmetry axion field transform additively as $a \to a + \alpha f_a$

- The axion Lagrangian: $\mathcal{L}_{\text{eff}} = \left(\bar{\theta} + \frac{a}{f_a} \right) \frac{\alpha_s}{8\pi} G_{\mu\nu}^a \tilde{G}_{\mu\nu}^a - \frac{1}{2} \partial^\mu a \partial_\mu a + \mathcal{L}(\partial_\mu a, \psi)$

[Pecei, Quinn (1977), Weinberg (1978), Wilczek (1978)]
The axion

- To solve the problem, Peccei Quinn introduced a global $U(1)_{PQ}$ symmetry to the QCD

- This $U(1)_{PQ}$ symmetry would be spontaneously broken at a high energy scale f_a

- Such an spontaneously broken symmetry implied a new pNG boson, “Axion”

- Under the symmetry axion field transform additively as $a \rightarrow a + \alpha f_a$

- The axion Lagrangian: $\mathcal{L}_{\text{eff}} = \left(\frac{\alpha_s}{8\pi} G_{\mu\nu}^a \tilde{G}_{\mu\nu}^a - \frac{1}{2} \partial^\mu a \partial_\mu a + \mathcal{L}(\partial_\mu a, \psi) \right)$

[Peeccei, Quinn (1977), Weinberg (1978), Wilczek (1978)]
Axion Landscape

- Axion mass $\sim 1/f_a$;

$$m_a \sim m_\pi \frac{f_\pi}{f_a} \sim 6 \text{ meV} \frac{10^9 \text{ GeV}}{f_a}$$
Axion Landscape

- Axion mass \(\sim 1/f_a \);

\[
m_a \approx m_\pi \frac{f_\pi}{f_a} \approx 6 \text{ meV} \frac{10^9 \text{ GeV}}{f_a}
\]

The effective low energy axion-Lagrangian

\[
\mathcal{L} = \frac{1}{2} \left(\partial_\mu a \right)^2 - m_a^2 a^2 - \frac{1}{4} g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} - i g_{ae} a \bar{e} \gamma_5 e - i a \bar{N} \gamma_5 \left(g_{0aN} + \tau_3 g_{3aN} \right) N
\]

Accessible couplings for experimental detection

- All axion couplings \(\sim 1/f_a \);
Experimental efforts
Current constraint on axion-photon couplings

Credit: C. O’Hare, https://cajohare.github.io/AxionLimits/
Experimental efforts

Current constraint on axion-photon couplings

Credit: C. O’Hare, https://cajohare.github.io/AxionLimits/
Experimental efforts
Projected constraint on axion-photon couplings

Credit: C. O’Hare, https://cajohare.github.io/AxionLimits/
JUNO: Jiangmen Underground Neutrino Observatory

- It is a medium-baseline (53km) reactor neutrino experiment located in China, under construction
- JUNO features a 20 kton multi-purpose underground liquid scintillator detector
- Aims to determine neutrino mass ordering and precision measurement of PMNS parameters
JUNO: Jiangmen Underground Neutrino Observatory

- It is a medium-baseline (53km) reactor neutrino experiment located in China, under construction.
- JUNO features a 20 kton multi-purpose underground liquid scintillator detector.
- Aims to determine neutrino mass ordering and precision measurement of PMNS parameters.
- It offers exciting opportunities for addressing many important topics in neutrino and astro-particle physics.
JUNO: Jiangmen Underground Neutrino Observatory

- It is a medium-baseline (53km) **reactor neutrino experiment** located in China, under construction
- JUNO features a 20 kton multi-purpose underground liquid scintillator detector
- Aims to determine neutrino mass ordering and precision measurement of PMNS parameters
- It offers exciting opportunities for addressing many important topics in **neutrino and astro-particle physics**.

Supernova neutrinos
Atmospheric neutrinos
Solar neutrinos, etc...

Dark matter
NSI's
Sterile ν’s
Lorentz violation

NN@ICHEP 2022
JUNO: Jiangmen Underground Neutrino Observatory

- It is a medium-baseline (53km) **reactor neutrino experiment** located in China, under construction
- JUNO features a 20 kton multi-purpose underground liquid scintillator detector
- Aims to determine neutrino mass ordering and precision measurement of PMNS parameters
- It offers exciting opportunities for addressing many important topics in **neutrino and astro-particle physics**.
Solar axion

- Sun provides an ideal platform to study solar axions by producing very intense flux.
- We consider solar axion produced in the $p + d \rightarrow ^3\text{He} + a \ (5.49 \text{ MeV})$ reaction
- Axion flux $\propto \nu \nu$ neutrino flux and is known with a high accuracy

 $\Phi_{a0} = 3.23 \times 10^{10} (g_{3aN})^2 (p_a/p_\gamma)^3$ where p_γ and p_a are the photon and axion momenta

Solar axions flux on the Earth’s surface:

- We consider

 $a + e \rightarrow e + \gamma$ (Compton conversion of axions to photon)
 $a \rightarrow e^+e^-$ (Axion decays to electron-positron pair)
 $a + Z \rightarrow \gamma + Z$ (Inverse Primakoff conversion)
 $a \rightarrow \gamma\gamma$ (Axion decays to two photons)
Numerical Procedure: χ^2 is defined as

$$\chi^2 = 2 \times \sum_{i=1}^{240} \left(N_{pre}^i - N_{obs}^i + N_{obs}^i \times \log \frac{N_{obs}^i}{N_{pre}^i} \right) + \left(\frac{\varepsilon_s}{\sigma_s} \right)^2 + \left(\frac{\varepsilon_b}{\sigma_b} \right)^2,$$

$$N_{pre}^i = (1 + \varepsilon_s) \times T_i + (1 + \varepsilon_b) \times B_i + \frac{S}{\sqrt{2\pi}\sigma} \times e^{-\frac{(E_{6.5} - E_i)^2}{2\sigma^2}},$$
Numerical Procedure: \(\chi^2 \) is defined as

\[
\chi^2 = 2 \times \sum_{i=1}^{240} \left(N_{pre}^i - N_{obs}^i + N_{obs}^i \times \log \left(\frac{N_{obs}^i}{N_{pre}^i} \right) \right) + \left(\frac{\varepsilon_s}{\sigma_s} \right)^2 + \left(\frac{\varepsilon_b}{\sigma_b} \right)^2,
\]

\[
N_{pre}^i = (1 + \varepsilon_s) \times T_i + (1 + \varepsilon_b) \times B_i + \frac{S}{\sqrt{2\pi}\sigma} \times e^{-\frac{(E_{6.5} - E_i)^2}{2\sigma^2}},
\]

- **Total signal**
- **Total Background**
- **Axion peak Intensity**
Numerical Procedure: χ^2 is defined as

\[
\chi^2 = 2 \times \sum_{i=1}^{240} \left(N_{pre}^i - N_{obs}^i + N_{obs}^i \times \log \left(\frac{N_{obs}^i}{N_{pre}^i} \right) \right) + \left(\frac{\varepsilon_s}{\sigma_s} \right)^2 + \left(\frac{\varepsilon_b}{\sigma_b} \right)^2,
\]

\[
N_{pre}^i = (1 + \varepsilon_s) \times T_i + (1 + \varepsilon_b) \times B_i + \frac{S}{\sqrt{2\pi}\sigma} \times e^{-\frac{(E_{6.5} - E_i)^2}{2\sigma^2}},
\]

- **Total signal**
- **Total Background**
- **Axion peak Intensity**

Nuisance parameters

Signal and background Uncertainties, 5% & 15%
Numerical Procedure: \(\chi^2 \) is defined as

\[
\chi^2 = 2 \times \sum_{i=1}^{240} \left(N_{pre}^i - N_{obs}^i + N_{obs}^i \times \log \frac{N_{obs}^i}{N_{pre}^i} \right) + \left(\frac{\varepsilon_s}{\sigma_s} \right)^2 + \left(\frac{\varepsilon_b}{\sigma_b} \right)^2,
\]

\[
N_{pre}^i = (1 + \varepsilon_s) \times T_i + (1 + \varepsilon_b) \times B_i + \frac{S}{\sqrt{2\pi}\sigma} \times e^{-\frac{(E_{6.5}-E_i)^2}{2\sigma^2}},
\]

Nuisance parameters
Signal and background uncertainties, 5% & 15%
Numerical Procedure: χ^2 is defined as

$$\chi^2 = 2 \sum_{i=1}^{240} \left(N_{\text{pre}}^i - N_{\text{obs}}^i + N_{\text{obs}}^i \times \log \frac{N_{\text{obs}}^i}{N_{\text{pre}}^i} \right) + \left(\frac{\varepsilon_s}{\sigma_s} \right)^2 + \left(\frac{\varepsilon_b}{\sigma_b} \right)^2,$$

$$N_{\text{pre}}^i = (1 + \varepsilon_s) \times T_i + (1 + \varepsilon_b) \times B_i + \frac{S}{\sqrt{2\pi\sigma}} \times e^{-\frac{(E_{6.5} - E_i)^2}{2\sigma^2}},$$

Nuisance parameters

Signal and background uncertainties, 5% & 15%

$S_{\text{lim}} = 97$ at 90% C. L.
• Expected number of events in presence of solar axion:

\[S_{\text{events}} = \Phi_a \sigma_{a-e,p,c} N_{e,p,c} T \varepsilon \leq S^{\text{lim}} \]

Axion flux
Interaction Cross-section
of electrons, protons, carbon nuclei
Measurement time
Efficiency
Upper limits on # of events

Borexino Collaboration, Bellini, et. al. PRD 85 (2012) 092003
Cont...

• Expected number of events in presence of solar axion:

\[S_{\text{events}} = \Phi_a \sigma_{a-e,p,C} N_{e,p,C} T \varepsilon \leq S^{\text{lim}} \]

- Axion flux
- Interaction Cross-section
- # of electrons, protons, carbon nuclei
- Measurement time
- Efficiency
- Upper limits on # of events

\[S^{\text{lim}} = 97 \text{ at 90\% C. L.} \]
Axion detection

- Compton conversion of axions to photons: $a + e \rightarrow e + \gamma$

 Cross-section is given by \(\sigma_{CC} \approx g_{ae}^2 \times 4.3 \times 10^{-25} \)

 for \(m_a < 1 \text{ MeV} \)

- We obtain at 90% c.l.

 \[|g_{3aN} \times g_{ae}| \leq 6.33 \times 10^{-14} \text{ for JUNO} \]

 \[|g_{3aN} \times g_{ae}| \leq 5.5 \times 10^{-13} \text{ for Borexino} \]

Axion detection

- Compton conversion of axions to photons: $a + e \rightarrow e + \gamma$

Cross-section is given by $\sigma_{CC} \approx g_{ae}^2 \times 4.3 \times 10^{-25}$

for $m_a < 1$ MeV

- We obtain at 90% c.l.

$$|g_{3aN} \times g_{ae}| \leq 6.33 \times 10^{-14}$$ for JUNO

$$|g_{3aN} \times g_{ae}| \leq 5.5 \times 10^{-13}$$ for Borexino

Axion detection

- Compton conversion of axions to photons: \(a + e \rightarrow e + \gamma \)

Cross-section is given by \(\sigma_{CC} \approx g_{ae}^2 \times 4.3 \times 10^{-25} \)

for \(m_a < 1 \) MeV

- We obtain at 90% c.l.

\[|g_{3aN} \times g_{ae}| \leq 6.33 \times 10^{-14} \] for JUNO

\[|g_{3aN} \times g_{ae}| \leq 5.5 \times 10^{-13} \] for Borexino

Cont...

- Axion decays to electron-positron pair

Expected number of events for \(a \rightarrow e^+e^- \)

\[
S_{e^+e^-} = N_{e^+e^-} T
\]

where \(N_{e^+e^-} = \Phi_a \frac{V m_a}{\beta E_a \tau_{e^+e^-}} \)

\[\propto (g_{3aN}, g_{ae}) \]
Cont...

• Axion decays to electron-positron pair

Expected number of events for $a \rightarrow e^+e^-$

$$S_{e^+e^-} = N_{e^+e^-}T$$

where

$$N_{e^+e^-} = \Phi_a \frac{V m_a}{\beta E_a \tau_{e^+e^-}}$$

$$\propto (g_{3aN}, g_{ae})$$
Axion electron and axion nucleon couplings

- For varying axion mass: \(S_{\text{events}} = \Phi \sigma_{a-e,p,c} N_{e,p,c} T \bar{\varepsilon} \leq S^{\text{lim}} \)
Axion electron and axion nucleon couplings

- For varying axion mass: $S_{\text{events}} = \Phi_a \sigma_{a-e,p,C} N_{e,p,C} T \varepsilon \leq S_{\text{lim}}$

- JUNO can provide the most stringent bound around sub-MeV axion mass
Axion photon and axion nucleon couplings

- Inverse Primakoff conversion $a + Z \rightarrow \gamma + Z$

$$S_{PC} = \Phi_a \sigma_{PC} N_C T \varepsilon_{PC}$$

for $m_a < 1\text{ MeV}$

$\propto g_{a\gamma}$

$\propto g_{3aN}$

- We obtain at 90% c.l.

$$|g_{3aN} \times g_{a\gamma}| \leq 2.0 \times 10^{-12}\text{ GeV}^{-1} \text{ for JUNO}$$

$$|g_{3aN} \times g_{ae}| \leq 4.6 \times 10^{-11}\text{ GeV}^{-1} \text{ for Borexino}$$

$m_a = 10\text{ keV}$
Axion photon and axion nucleon couplings

- Inverse Primakoff conversion $a + Z \rightarrow \gamma + Z$

\[S_{PC} = \Phi_a \sigma_{PC} N_C T \varepsilon_{PC} \]

\[\propto g_{3aN} \]

\[\propto g_{\gamma} \]

\[\text{for } m_a < 1 \text{ MeV} \]

- We obtain at 90% c.l.

\[|g_{3aN} \times g_{\gamma}| \leq 2.0 \times 10^{-12} \text{ GeV}^{-1} \text{ for JUNO} \]

\[|g_{3aN} \times g_{ae}| \leq 4.6 \times 10^{-11} \text{ GeV}^{-1} \text{ for Borexino} \]

\[m_a = 10 \text{ keV} \]

Excluded by JUNO

Compton Ge

Borexino

SN 1987A cooling
Axion photon and axion nucleon couplings

- Axion decays to two photons

\[a \rightarrow \gamma \gamma \]

Expected number of events for \(a \rightarrow \gamma \gamma \)

\[S_{\gamma \gamma} = N_{\gamma} T \]

where \(N_{\gamma} = \Phi_a \frac{V m_a}{\beta E_a \tau_\gamma} \)

\[\propto (g_{3aN}, g_{a\gamma}) \]

\[m_a = 1.2 \text{ MeV} \]
Axion photon and axion nucleon couplings

- Axion decays to two photons

Expected number of events for $a \rightarrow \gamma\gamma$

$$S_{\gamma\gamma} = N_\gamma T$$

where

$$N_\gamma = \Phi_a \frac{V m_a}{\beta E_\gamma \tau_\gamma} \propto (g_{3aN}, g_{a\gamma})$$

$$m_a = 1.2 \text{ MeV}$$

Excluded by JUNO

Axion photon and axion nucleon couplings

- Axion decays to two photons

Expected number of events for $a \rightarrow \gamma\gamma$

$$S_{\gamma\gamma} = N_\gamma T$$

where

$$N_\gamma = \Phi_a \frac{V m_a}{\beta E_\gamma \tau_\gamma} \propto (g_{3aN}, g_{a\gamma})$$

$$m_a = 1.2 \text{ MeV}$$

Excluded by JUNO

Axion photon and axion nucleon couplings

- Axion decays to two photons

Expected number of events for $a \rightarrow \gamma\gamma$

$$S_{\gamma\gamma} = N_\gamma T$$

where

$$N_\gamma = \Phi_a \frac{V m_a}{\beta E_\gamma \tau_\gamma} \propto (g_{3aN}, g_{a\gamma})$$

$$m_a = 1.2 \text{ MeV}$$

Excluded by JUNO

Axion photon and axion nucleon couplings

- Axion decays to two photons

Expected number of events for $a \rightarrow \gamma\gamma$

$$S_{\gamma\gamma} = N_\gamma T$$

where

$$N_\gamma = \Phi_a \frac{V m_a}{\beta E_\gamma \tau_\gamma} \propto (g_{3aN}, g_{a\gamma})$$

$$m_a = 1.2 \text{ MeV}$$

Excluded by JUNO

Axion photon and axion nucleon couplings

- Axion decays to two photons

Expected number of events for $a \rightarrow \gamma\gamma$

$$S_{\gamma\gamma} = N_\gamma T$$

where

$$N_\gamma = \Phi_a \frac{V m_a}{\beta E_\gamma \tau_\gamma} \propto (g_{3aN}, g_{a\gamma})$$

$$m_a = 1.2 \text{ MeV}$$

Excluded by JUNO
Axion photon and axion nucleon couplings

- For varying axion mass: \(S_{\text{events}} = \Phi_a \sigma_{a-e,p} C N_{e,p} T \varepsilon \leq S_{\text{lim}} \)
Final remarks:

- Aimed to search for 5.5 MeV solar axions for the JUNO detector

- The processes that are examined:

 \[a + e \rightarrow e + \gamma \]
 \[a \rightarrow e^+e^- \]
 \[a + Z \rightarrow \gamma + Z \] and
 \[a \rightarrow \gamma\gamma \]

- Bounds obtained for JUNO:

 \[|g_{3aN} \times g_{ae}| \leq 6.33 \times 10^{-14} \]

 \[|g_{3aN} \times g_{a\gamma}| \leq 2.0 \times 10^{-12} GeV^{-1} \]

- JUNO can provide the most stringent bound around sub-MeV axion mass for the axion electron times axion nucleon plane.
thank you