Searches for resonances decaying to bosons in leptonic final states in ATLAS

Andreas Korn,

University College London

Andreas.Korn@cern.ch

(For the ATLAS collaboration)

Introduction

- Many Beyond the Standard Model Physics (BSM) predict new Gauge, Higgs and other Bosons (Graviton, Radion,...)
- Often decay into Standard Model Bosons:
 - WW, WZ, ZZ, WH, ZH, γγ
- Simplified Benchmark Models
 - Heavy Vector Triplets (HVT) W⁻', Z⁰', W⁺'
 - Georgi-Machacek Model (GM):
 Higgs quintuplet (H₅⁺⁺,H₅⁺,H₅⁰,H₅⁻,H₅⁻⁻)
- Effective Field Theory (EFT)

HVT benchmark models

HVT Lagrangian

JHEP 09 (2014) 060

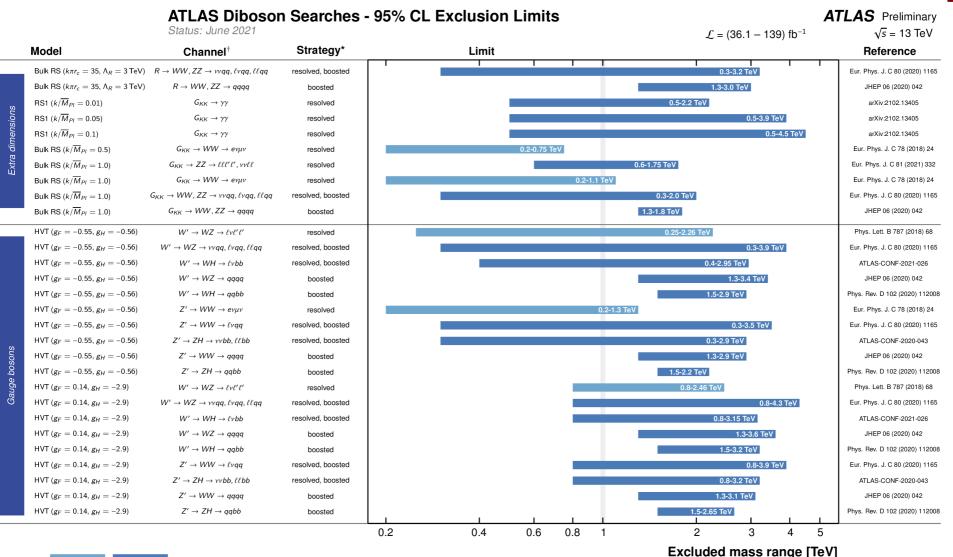
Simplified Model to bridge Theory & Data

$$\mathcal{L}_{\mathcal{W}}^{\text{int}} = -g_f \mathcal{W}_{\mu}^a \bar{f}_k \gamma^{\mu} \frac{\sigma_a}{2} f_k - g_H \left(\mathcal{W}_{\mu}^a H^{\dagger} \frac{\sigma_a}{2} i D^{\mu} H + \text{h.c..} \right),$$

$$g_f = \frac{g^2}{g_V} c_f; \ g_H = g_V c_H$$

- Model A
 - Extended Gauge Symmetry (extra SU(2))
 - $-g_v = 1 (g_H = -0.56 \text{ and } g_f = -0.55) c_f c_H c_H$
- Model B
 - Minimal Composite Higgs Model
 - $-g_v = 3 (g_H = -2.9 \text{ and } g_f = 0.14)$

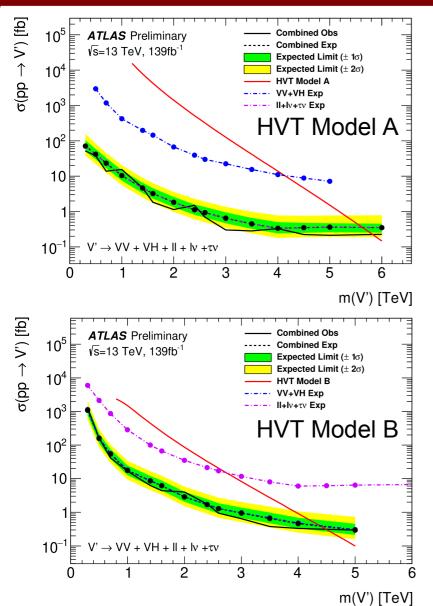
Leptonic final states


- Clear signature in pp collisions
- Provides a trigger signature
- Usually fewer backgrounds than other modes
- Leptonic di-boson signatures
 - $-WW \rightarrow \ell \nu \ell \nu$, $WW \rightarrow \ell \nu qq$
 - $-WZ \rightarrow \ell \nu \ell \ell$, $WZ \rightarrow \ell \nu qq$, $WZ \rightarrow qq\ell \ell$, $WZ \rightarrow qq\nu \nu$
 - $-ZZ \rightarrow \ell\ell\nu\nu, ZZ \rightarrow \ell\ell\ell\ell, ZZ \rightarrow qq\ell\ell, ZZ \rightarrow qq\nu\nu$
 - -WH → ℓvbb
 - $-ZH \rightarrow \ell\ell bb$

here usually $\ell = e$, μ

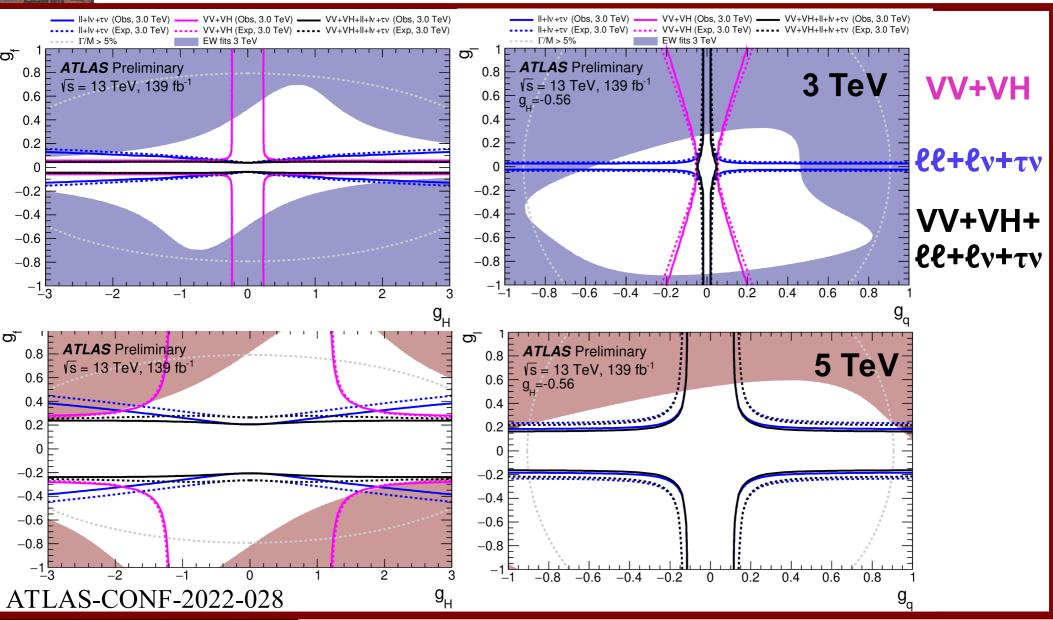
Overview

 \sqrt{s} = 13 TeV \mathcal{L} = 139 fb⁻¹

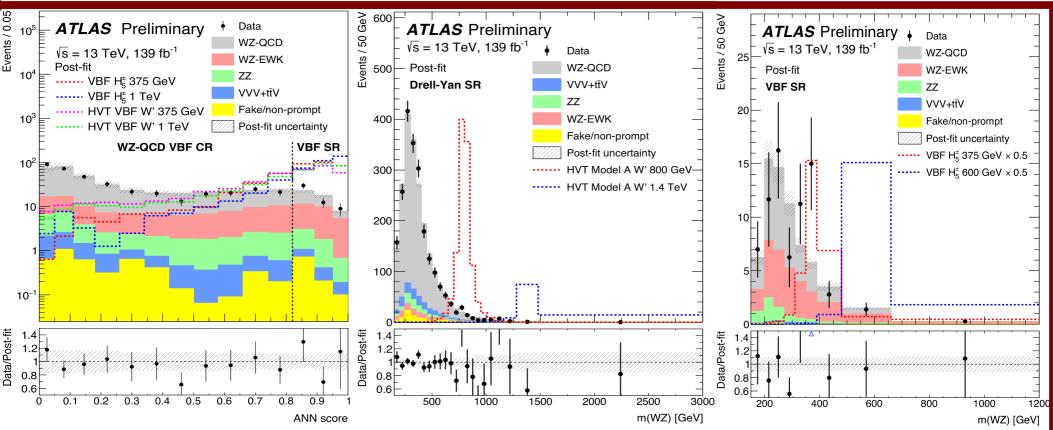

*small-radius (large-radius) jets are used in resolved (boosted) events † with $\ell=\mu,$ e

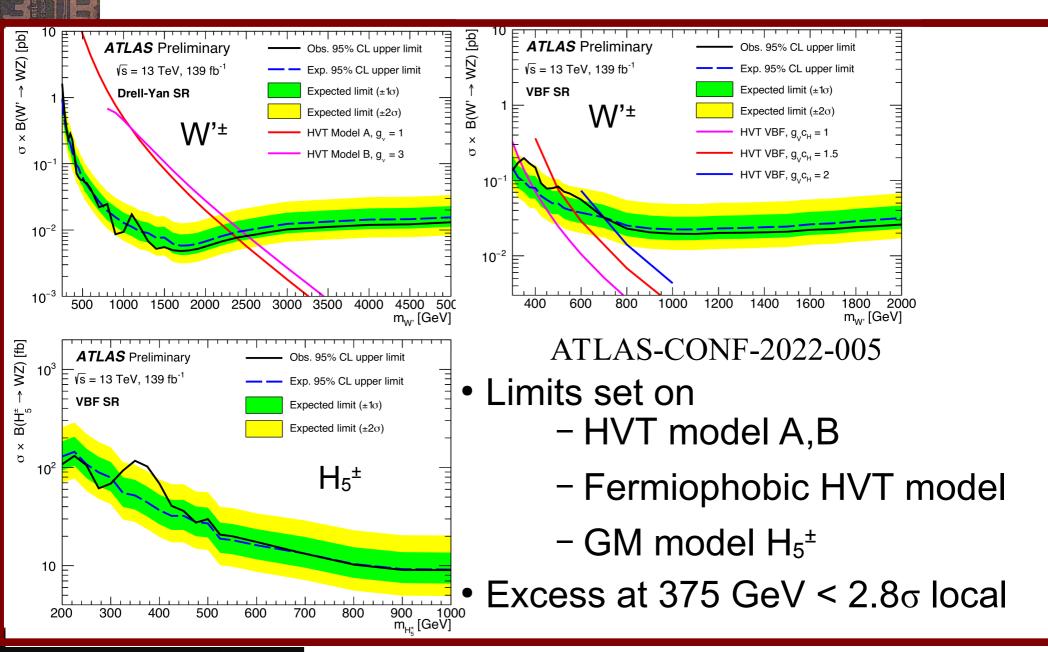
ATL-PHYS-PUB-2021-018

Combination $X \rightarrow VV$ and $X \rightarrow VH$


	Analysis	leptons	$E_{T_{miss}}$	jets	b-tags	Discr.	Ref
ĺ	$WW/WZ \rightarrow qqqq$	0	Veto	≥2J	-	m_{VV}	[10]
	$WZ \rightarrow \nu \nu qq$	0	Yes	≥1J	0	m_{VV}	[11]
	$WZ \rightarrow \ell \nu qq$	1e, 1μ	Yes	$\geq 2j, \geq 1J$	0, 1, 2	m_{VV}	[11]
	$WZ \to \ell\ell qq$	2e, 2μ	-	$\geq 2j, \geq 1J$	0	m_{VV}	[11]
	$WZ \to \ell \nu \ell \ell$	$3 \subset (e, \mu)$	Yes	-	0	m_{VV}	[12]
	$WH \rightarrow qqbb$	0	Veto	≥2J	1, 2	m_{VH}	[13]
	$ZH \rightarrow \nu \nu bb$	0	Yes	$\geq 2j, \geq 1J$	1, 2	m_{VH}	[15]
	$WH \rightarrow \ell \nu bb$	1e, 1μ	Yes	$\geq 2j, \geq 1J$	1, 2	m_{VH}	[14]
	$ZH \to \ell\ell bb$	2e, 2μ	Veto	$\geq 2j, \geq 1J$	1, 2	m_{VH}	[15]
	$\ell \nu$	1e, 1μ	Yes	-	-	m_T	[17]
	au u	1τ	Yes	-	-	m_T	[18]
	$\ell\ell$	≥2e, ≥2 <i>µ</i>	-	-	-	$m_{\ell\ell}$	[16]

- Limits set on
 - HVT model A: 5.8 TeV
 - HVT model B: 4.5 TeV
- Constraints on g_f & also individual lepton g_l & quark g_q couplings


Combination $X \rightarrow VV$ and $X \rightarrow VH$


$X \rightarrow WZ \rightarrow \ell \nu \ell' \ell'$

- 2 signal regions: Drell-Yan and Vector-Boson-Fusion
- Selected using Artificial NN and p_T/m(WZ)
- VBF Signal Region excess at 375 GeV < 1.6σ (2.8σ local)

$X \rightarrow WZ \rightarrow \ell \nu \ell' \ell'$

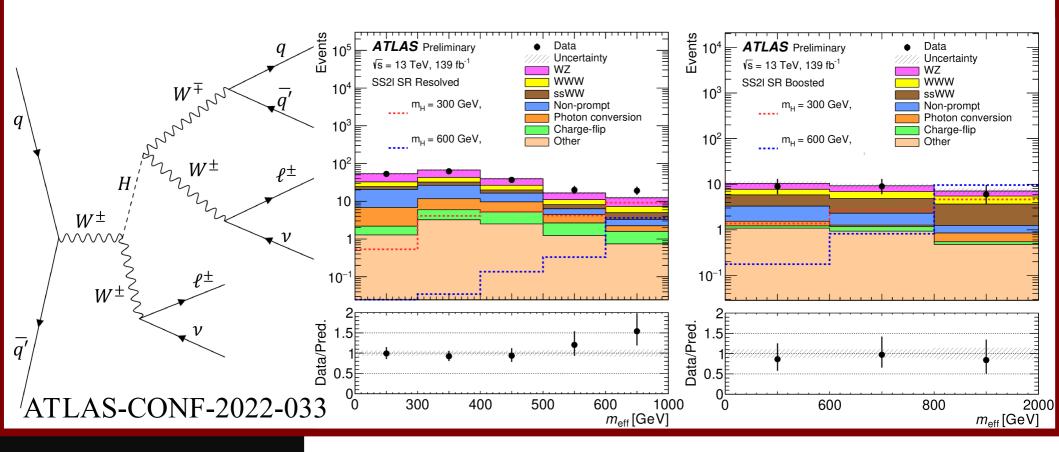
$WH \rightarrow WWW \rightarrow X\ell^{\pm}\ell^{\pm}$

- Search for additional heavy Higgs Bosons H
- General formulation in Effective Field Theory

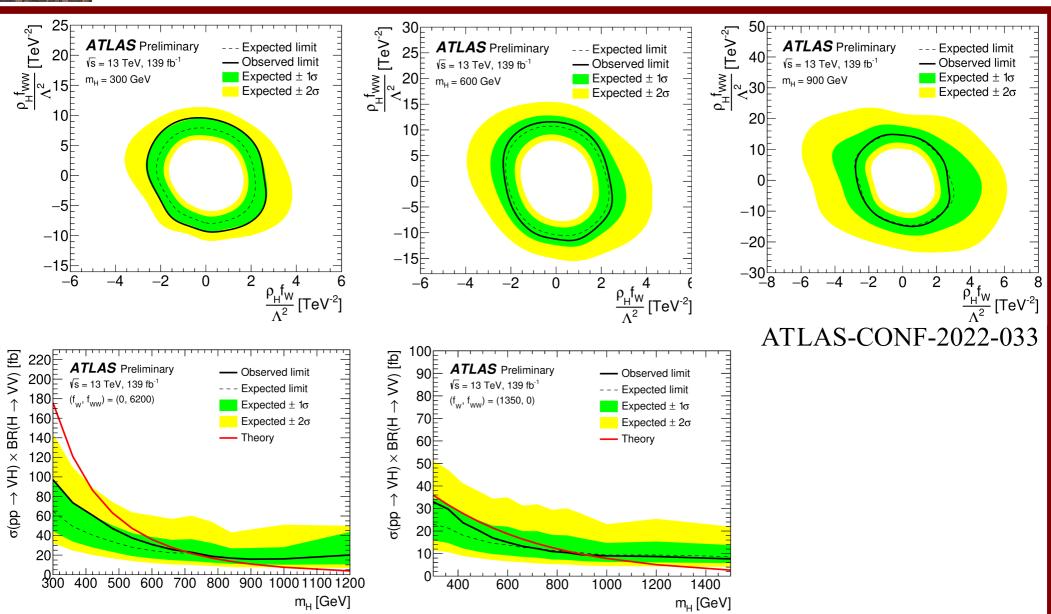
$$\mathcal{L}_{\text{eff}} = \sum_{D=2} \mathcal{L}^{(D)} = \sum_{D=2} \sum_{i} \frac{c_{i}^{(D)}}{\Lambda^{D-4}} \mathcal{O}_{i}^{(D)}$$

$$\mathcal{L}_{HWW}^{(4)} = \rho_{H} g m_{W} H W^{\mu} W_{\mu},$$

$$\mathcal{L}_{HWW}^{(6)} = \rho_{H} g m_{W} \frac{f_{W}}{2\Lambda^{2}} \left(W_{\mu\nu}^{+} W^{-\mu} \partial^{\nu} H + h.c. \right) - \rho_{H} g m_{W} \frac{f_{WW}}{\Lambda^{2}} W_{\mu\nu}^{+} W^{-\mu\nu} H,$$


- Considers also dim-6 operators scale of new physics Λ , anomalous couplings f_W, f_{WW}
- Enhancement of HVV coupling at higher boson momenta possible

$WH \longrightarrow WWW \longrightarrow X\ell^{\pm}\ell^{\pm}$


- Utilise associated production & same sign dilepton signature
- Effective mass of ($\ell vqq'$) system $m_{eff} = \sum p_T$, using p_T (lepton), p_T (jets) and missing transverse energy (MET)

$WH \longrightarrow WWW \longrightarrow X\ell^{\pm}\ell^{\pm}$

Andreas Korn ICHEP 2022, Bologna, 8th July

Conclusion

- ATLAS continues exploring the energy frontier
- Probed BSM physics with multi-boson signatures
- Interpret in simplified models HVT, GM, EFT
- So far no deviation from the SM found

the search continues

Bonus Slides

- [10] ATLAS Collaboration, Search for diboson resonances in hadronic final states in 139 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP **09** (2019) 091, arXiv: 1906.08589 [hep-ex] (cit. on pp. 2, 6).
- [11] ATLAS Collaboration, Search for heavy diboson resonances in semileptonic final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Eur. Phys. J. C 80 (2020) 1165, arXiv: 2004.14636 [hep-ex] (cit. on pp. 2, 6).
- [12] ATLAS Collaboration, Search for Resonant WZ $\rightarrow \ell \nu \ell' \ell'$ Production in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, ATLAS-CONF-2022-005, 2022, URL: https://cds.cern.ch/record/2803929 (cit. on pp. 2, 6).
- [13] ATLAS Collaboration,

 Search for resonances decaying into a weak vector boson and a Higgs boson in the fully hadronic final state produced in proton−proton collisions at √s = 13 TeV with the ATLAS detector,

 Phys. Rev. D 102 (2020) 112008, arXiv: 2007.05293 [hep-ex] (cit. on pp. 2, 6).
- [14] ATLAS Collaboration, Search for heavy resonances decaying into a W boson and a Higgs boson in final states with leptons and b-jets in 139 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, ATLAS-CONF-2021-026, 2021, URL: https://cds.cern.ch/record/2773302 (cit. on pp. 2, 6).

- [15] ATLAS Collaboration,
 - Search for heavy resonances decaying into a Z boson and a Higgs boson in final states with leptons and b-jets in 139 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, ATLAS-CONF-2020-043, 2020, URL: https://cds.cern.ch/record/2728053 (cit. on pp. 2, 6).
- [16] ATLAS Collaboration, Search for high-mass dilepton resonances using 139 fb⁻¹ of pp collision data collected at \sqrt{s} =13 TeV with the ATLAS detector, Phys. Lett. **B796** (2019) 68, arXiv: 1903.06248 [hep-ex] (cit. on pp. 2, 6).
- [17] ATLAS Collaboration, Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Rev. D 100 (2019) 052013, arXiv: 1906.05609 [hep-ex] (cit. on pp. 2, 6).
- [18] ATLAS Collaboration, Search for high-mass resonances in final states with a tau lepton and missing transverse momentum with the ATLAS detector, ATLAS-CONF-2021-025, 2021, URL: https://cds.cern.ch/record/2773301 (cit. on pp. 2, 6).

Systematics: $X \rightarrow WZ \rightarrow \ell \nu \ell' \ell'$

G					
Source of uncertainty	$\Delta\mu/\mu[\%]$				
	Drell-Yan signal region	VBF signal region			
	m(W') = 1100 GeV	$m(H_5^{\pm}) = 375 \text{ GeV}$			
WZ-QCD+ ZZ normalization	2	11			
WZ background: parton shower	6	1			
WZ background: scale, PDF	5	8			
Fake/non-prompt background	3	1			
ZZ background: scale, PDF	0.2	< 0.1			
$VVV + t\bar{t}V$ modelling	3	1			
Electron identification	6	3			
Muon identification	1	4			
Jet uncertainty	0.8	16			
Flavour tagging	0	1			
Missing transverse energy	0.2	0.5			
MC statistical uncertainty	10	5			
Luminosity	$\overline{2}$	8			
Pileup	0.1	8			
Total systematic uncertainty	16	22			
Data statistical uncertainty	54	55			
Total	56	59			

