

Searches in CMS for new physics in the final states with leptons

Olena Karacheban on behalf of CMS Collaboration (olena.karacheban@cern.ch)

ICHEP, 6-13 July 2022

Introduction

- Standard Model is elegant theory and so far it withstands many tests carried out at collider experiments
- However SM can not explain
 - Asymmetry of the matter in the universe
 - Neutrino mass
 - Mass hierarchy between SM particles generations ...

• Wide range of models probing Beyond the Standard Model physics:

- Heavy gauge bosons and neutrino
- Extended Higgs sector
- Dark Matter
- Unification theories
- Extra Dimensions ...
- **Full Run 2 data** set is available to examine these theories
- Leptons are very clean probes to explore the phasespace for new physics

CMS Integrated Luminosity, pp, $\sqrt{s}=$ 13 TeV

Several latest EXO searches with leptons in the final states

Search for new physics in τ plus missing transverse momentum final state (EXO-21-009)

Key points:

- Hadronic tau + MET
- Multiple interpretations, including LQ, quantum black holes and nonuniversal FIRST RELEASE gauge interaction model and more

Search for dilepton resonances from decays of (pseudo)scalar light bosons (EXO-21-018)

Key points:

- Three or four leptons in the final state Different coupling scenarios and variety of
- signatures
- Associated production with W/Z posonts or ttbar pair

FIRST RELEASE

The search for a third-generation leptoquark coupling to a τ lepton and a b quark (EXO-19-016)

Key points:

- Final state with $\boldsymbol{\tau}$ leptons
- Single, pair and LQ3 nonresonant production FIRST REL

Inclusive nonresonant multilepton search (EXO-21-002)

Key points:

- Three or four leptons in the final state
- Model independent tables Model specific MVA
- Seesaw type III, third-generation LQ and

Common terms and similarities for lepton analysis

- Based on Run 2 LHC data (full Run 2) collected with CMS detector.
- Triggers: include single / double electron or muon, single / double photon.
- Main **prompt backgrounds** are normally normalized in the dedicated control regions orthogonal to signal region.
- Fake (misidentification) backgrounds are measured from data in bins of pT and η, when possible in several control regions:
 - Drell-Yan+Jets and ttbar+Jets rates are parameterized using sideband events with loose isolation.
 - *τ* fake backgrounds have different nature and are measured separately from light leptons.

Example of signal and control regions separation:

<u>EXO-21-002</u> (nonresonant multilepton)

Search for new physics in au plus MET final state (EXO-21-009)

- A new charged gauge boson (W') is one possible signature of the **sequential SM (SSM)**.
- W' fermion couplings are similar to those of the SM W with additional decay W'⇒tb, if mass W' >180 GeV.
- The **W' coupling strengths** may differ from that of the SM W or the SSM W' bosons.
 - $\circ~~g_{_{\rm W}^{\,\prime}}\,/g_{_{\rm W}}$ impacts width and cross section
 - For $g_{W'}/g_{W} == 1$, this corresponds to Sequential Standard Model (benchmark)

- **Final state:** one (hadronic) tau and missing transverse momentum
- p_T of tau and MET is balanced: expect back-to-back in azimuthal angle ϕ
- **Discriminant variable**: transverse mass m_T

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\tau_h} p_{\rm T}^{\rm miss} (1 - \cos \Delta \phi(\tau_{\rm h}, \vec{p}_{\rm T}^{\rm miss}))}$$

Results: Search for new physics in au plus MET (EXO-21-009)

Results are also interpreted for

- Nonuniversal gauge interaction model (NUGIM)
- Quantum black holes (QBH)
- Effective field theory (EFT)
- Vector leptoquark model: t-channel production
 - less dependence on mass of the LQ
 - First limit set on vector LQ model in this t-channel at the LHC.
- Taking background as a single bin ranging from min M_T to infinity also model independent limit is derived.

Model	Parameter	Expected Limit	Observed Run-2 Limit	10 ⁶ CMS Preliminary 138 fb ⁻¹ (13 TeV)
SSM W' $\rightarrow \tau \nu$	m _{W'}	4.8 TeV	4.8 TeV	e
NUGIM $\cot(\theta_E)=1$	m _{W'}	4.8 TeV	4.8 TeV	▷ 10 ⁵ Exp. 95% CL limit Best-fit LH
NUGIM $\cot(\theta_E) = 5.5$	m _W ,	2.3 TeV	2.1 TeV	10 ⁴ Exp. (68%) Democratic
EFT ϵ_L =0.3	Signal strength	0.8	1.2	Exp. (95%)
EFT ϵ_{SL} =1.0	Signal strength	0.1	0.2	10 ³
EFT ϵ_T =0.3	Signal strength	0.5	1.0	
LQ democratic, $g_U = 1.0$	m _{LO}	6.7 TeV	5.9 TeV	
LQ Best-fit LH, g_U =1.0	m _{LQ}	145 GeV	205 GeV	10
LQ Best-fit LH, g_U =2.5	m _{LQ}	1.8 TeV	1.5 TeV	
LQ Best-fit LH+RH, g_U =1.0	m _{LO}	645 GeV	515 TeV	
LQ Best-fit LH+RH, g_U =2.5	m _{LQ}	3.0 TeV	2.5 TeV	10 ⁻¹ 2000 4000 6000 8000 10000
QBH	m _{QBH}	6.3 TeV	6.3 TeV	m _{LQ} (GeV)

The search for a third-generation leptoquark coupling to a τ FIRST RELEASE lepton and a b quark (EXO-19-016) $\tau_{\rm h}\tau_{\rm h}, m_{\rm vis} > 600 \, {\rm GeV}$ 137 fb⁻¹ (13 TeV

Events / 1

10⁴

10

10²

10-

 10^{-2}

0.5

CMS

Preliminary

Observed

Bka, unc

→ τ_h fakes

Drell-Yan with I ->

LQ. 2000 GeV. λ=2.5, β=1

Scalar nonres., $\sigma = 62$

Vector nonres $\alpha = 43^{+}$

- Combined most important tau channels: *r*, *e*, *µ*, *µ*,
- Single, pair production and nonresonant production in t-channel
- 3σ excess is observed arising from nonresonant channel

Summary of signal selections

Inclusive nonresonant multilepton probes of new phenomena (<u>EXO-21-002</u>)

- A multi-bin, inclusive, model-independent multilepton analysis with full Run2 data
- Covering light leptons, hadronic taus, and b-tags
- Categories by number of leptons:
 - Trilepton categories: 3L, 2L1T, 1L2T (L for light lepton and T for hadronic tau)
 - Quadlepton categories: 4L, 3L1T, 2L2T, 1L3T
- Each of the trilepton categories is split in 0, 1 and 2 or more b-jets categories (statistics permitting)
- Several signal models exploring high energy signatures (ST range up to 2 TeV)

Search for dilepton resonances from decays of (pseudo)scalar light bosons (EXO-21-018)

- **Resonant part** of the analysis, **not inclusive**
 - \circ $\;$ natural extension of the multilepton analysis to the low energy
- Backgrounds are shared between nonresonant and resonant analyses
- Event selection has been reoptimized for light bosons search

and FIRST RELEASI

Inclusive cut based tables (<u>EXO-21-002</u>)

- Very detailed, SM-centric binning scheme to **probe dataset in many dimensions**
- Bins in ST and LT+MET

		OSSF0			OSSF	1			OSSF2			
		BelowZ	AboveZ	SS	OnZ	BelowZ	AboveZ	MixedZ	Single-OnZ	Double-OnZ	OffZ	
21	Low $p_{\rm T}/M_{\rm T}$	A1*		A2	(A3)	A4	A5	A6	_		-	
3L	High $p_{\rm T}/M_{\rm T}$	A7*		A8	A9	A10	A11	A12	_	-	_	
OI 1T	Low $p_{\rm T}$	B1	B2	B3	B4	B5	B6	-	-	—	-	
ZLII	High $p_{\rm T}$	B7	B8	B9	B10	B11	B12	_	_	_	_	
1L2T		C1	C2	C3	_	C4	C5	_	_	-	_	
4L		D1*			D2	D3*			D4	D5	D6	
3L1T		E1*			E2	E3*				—	-	
2L2T		F1*			F2*			-	F3	2_	F4	
1L3T		G1*			-	G1*		—	- /	-		

- On top of this infrastructure several theory models are tested that provide complementary coverage of signature space
- New physics could manifest itself as an excess in the tails of pT distributions

Complementary nonresonant signal models (<u>EXO-21-002</u>)

Tables in LT+MET and ST bins in this analysis create **regions of sensitivity for wide range of signatures.**

Results will be interpreted in the context of three signal models:

- Type-III Seesaw
- Vector-like leptons (singlet and doublet)
- Scalar leptoquarks (coupling to top quark and a charged lepton)

These models provide complementary signatures and cover different corners of the phase space of multilepton landscape: with high/low hadronic activity and transverse momentum, with and without b-jets.

Model specific MVA (<u>EXO-21-002</u>)

- Signal specific BDT training for range of masses.
- Increase signal sensitivity by creating a variable bin width for the BDT score (stretch high BDT score, compress low BDT score).
- **Complementary to table results.** Tables and MVAs acting as performance reference points for each other.

BDT score transformation:

- Bin 1: [-1, -0.9115] Bin 19: [0.9755, 0.9925]
- Bin 2: [-0.9115, -0.8115]
- Bin 20: [0.9925, 1]

Results on nonresonant search (<u>EXO-21-002</u>)

- **Expected and observed upper limits** on the production cross-section are computed using the asymptotic CLs criterion at 95% CL.
- Only the best exclusion among tables and MVA for each mass point is shown. The best expected limits are used to select between the cut-based tables and MVA based limits.
- Upper observed mass limits:
 - Leptoquarks assuming the $B_e = 1 //B_\mu = 1 //B_\tau = 1$ scenario 1340 GeV // 1425 GeV // 1120 GeV
 - Vector-like leptons assuming the doublet extension 1045 GeV, and the singlet extension 125-170 GeV
 - Seesaw assuming the flavor-democratic scenario 975 GeV
 - Seesaw assuming the $B_e = 1 // B_{\mu} = 1 // B_{\tau} = 1$ scenario 990 GeV // 1065 GeV // 890 GeV

Resonant X ϕ family (EXO-21-018)

- Search for resonant signature of ϕ boson in multilepton events.
- ϕ is produced in association with ttbar pair or W/Z bosons. Scalar, pseudoscalar and Higgs-like coupling scenarios are probed.
 - $\circ \quad \mathsf{tt}\phi \,(\mathrm{S/PS})$
 - \circ Z ϕ (S/PS/H)
 - $\circ \quad \mathbf{W}\boldsymbol{\phi} \text{ (S/PS/H)}$
- Complementary signatures:
 - \circ o / 1+ b-jets,
 - low/high ST,
 - 3 or 4 leptons,
 - with/without MET

Cross sections for each coupling:

For S / PS: $\sigma(W\phi/Z\phi) \sim \Lambda^{-2}$ $\sigma(t\bar{t}\phi) \sim g_S^2 \text{ or } g_{PS}^2$ For H-like: $\sigma(W\phi/Z\phi) \sim \sin^2\theta$ Λ is the effective coupling mass scale, θ is the mixing angle, g is Yukawa coupling to top quark.

Analysis strategy and results (EXO-21-018)

- Dilepton mass is the final discriminator distribution: M_{ee} for $\phi \rightarrow e^+e^-$ and $M_{\mu\mu}$ for $\phi \rightarrow \mu^+\mu^-$ search.
- Z boson mass window 91±15 GeV is excluded due to high SM background contamination. *φ* mass is probed in the mass range of 15-76 GeV and 106-366 GeV.

Semiseronant **Xφ→ττ**

- Mass spectra are defined depending on the flavor of leptons used to reconstruct the ϕ mass:
 - $\mathbf{M}_{\tau\tau}$ when two $\mathbf{\tau}_{h}$ leptons are used
 - $M_{l\tau}$ when light lepton and τ_{h} lepton are used
 - $\hat{\mathbf{M}_{II}}$ when two light leptons are used (ee, $\mu\mu$ or $e\mu$)
- No significant excess of data consistent with the models probed.
- $tt\phi \rightarrow ee/\mu\mu$ are the most restrictive limits. $W\phi$, $Z\phi$ and $tt\phi \rightarrow \tau\tau$ are the first direct constraints on an extension of the SM with light boson in leptonic decay channels and this mass range.

Example of dielectron mass distribution with $W\phi$ signal ($\phi \rightarrow ee$)

Example of the min **M**_{/r} mass

Conclusions

- CMS performed many resonant and nonresonant searches beyond Standard Model with leptons in the final state.
- Only several latest publications were discussed today. **Full list of publications** can be found <u>here</u> and preliminary results <u>here</u>.
- Run 3 will bring: more data, new triggers, analysis techniques!

Looking forward to new exciting results!

Inclusive nonresonant multilepton probes of new phenomena (<u>EXO-21-002</u>)

- A multi-bin, inclusive, model-independent multilepton analysis with full Run2 data.
- Covering light leptons, hadronic taus, and b-tags.
- Categories by number of leptons:
 - Trilepton categories: 3L, 2L1T, 1L2T (L for light lepton and T for hadronic tau) Ο
 - Quadlepton categories: 4L, 3L1T, 2L2T, 1L3T Ο
- Each of the trilepton categories is split in 0, 1 and 2 or more b-jets categories (statistics permitting)

Fundamental tables

Z-candidates and mass, with b-jets and high/low **HT and MET**

Z-candidates and mass, with some M_{T} and pT categories

17

Inclusive fundamental tables (<u>EXO-21-002</u>, full Run 2)

4									Fundamental scheme				
Flavor based			OSSF0			OSSF	weather and the	9-1010 1-1110	OSSF2				
			BelowZ	AboveZ	SS	OnZ	BelowZ	AboveZ	MixedZ	Single	-OnZ	Double-OnZ	OffZ
Categories	21	Low $p_{\rm T}/M_{\rm T}$	A1*		A2	A3	A4	A5	A6	-		—	_
	31	High $p_{\rm T}/M_{\rm T}$	A7*		A8	A9	A10	A11	A12	-		-	-
	21.1T	Low $p_{\rm T}$	B1	B2	B3	B4	B5	B6	_	_		_	_
2L1	2L11	High $p_{\rm T}$	B7	B8	B9	B10	B11	B12	-	—		—	—
	1L2T		C1	C2	C3	_	C4	C5	-	-		-	_
	4L		D1*			D2	D3*			D4		D5	D6
	3L1T		E1*			E2	E3*			—	~	-	-
	2L2T		F1*			F2*			-	F3	\sim	>_	F4
	1L3T		G1*			_	G1*		_	-	/	_	-

Z-candidates

Signal regions tables (EXO-21-002)

Other recent EXO searches with leptons in the final states

Search for Z prime and heavy neutrino in events with two same flavor leptons and at least two jets (EXO-20-006)

Key points:

Neutral current Dielectron and dimuon final states

Lepton-flavor violating decays of heavy resonances and quantum black holes to $e\mu$, $e\tau$, $\mu\tau$ (EXO-19-014)

Key points:

- Final state with light leptons and taus
- Model specific and model independent exclusions

Right-handed W boson and heavy neutrino (EXO-20-002)

Key points:

- Charged current Dielectron and dimuon final states
- Boosted and resolved topologies

Search for Z', W_R and heavy Majorana neutrinos (<u>EXO-2O-006</u>, <u>EXO-2O-002</u>)

- The left-right symmetric model (LRSM) is an extension of SM by a right-handed SU(2) group: $\mathbf{W}_{\mathbf{B}}^{\pm}$ and \mathbf{Z}' and three right handed neutrinos.
- Two searches for extra gauge bosons and heavy Majorana neutrinos:
 - Dilepton (ee and $\mu\mu$) plus jets final Ο state
 - Z' mass range 400-4400 GeV Ο
 - $W_{\rm B}$, mass range 200-7000 GeV Ο
 - heavy neutrino (N, mass between 100 Ο GeV and Z' or W_R mass)
- Kinematics varies dramatically depending on ratio between masses of extra gauge bosons and heavy Majorana neutrinos

Searches for Heavy Neutral Leptons in CMS

Bologna, Italy

Results (<u>EXO-2O-006</u>)

- No significant excess for Z': upper limit are set on cross section times brach fraction
- Exclusion regions are set using signal cross sections:
 - Up to mZ' = 2.8 TeV in electron channel, and 4.4 TeV in muon channel
 - Significant improvement in sensitivity compared to the previous ATLAS results (2.2 TeV based on 8 TeV data from Run 1)

Search for lepton-flavor violating decays of heavy resonances and quantum black holes to e_{μ} , e_{τ} , μ_{τ} final states (EXO-19-014)

- Trigger
 - single-muon pT > 50 GeV
 - single-photon pT > 175 GeV.
- pT requirements in events selection
 - Electrons in the event have min pT of 35 GeV (50 GeV in $e\tau$ channel) and muons min pT of 53 GeV, leading hadronic τ min pT is 50 GeV.
- The statistical interpretation is done based on the shape of the invariant eµ mass and collinear eτ, μτ distributions.
- Analysis is designed to be as model independent as possible and tested various lepton-flavor violating signals:
 - Resonant *\tau*-sneutrino production in R-parity violating supersymmetric models (RPV SUSY).
 - Resonant heavy Z' gauge vector bosons with lepton-flavor violating transitions: Z' \Rightarrow e μ // e τ // $\mu\tau$ with BR 10% each.
 - Non-resonant **quantum black-hole** production in models with extra spatial dimensions (QBH).

Results (<u>EXO-19-014</u>, full Run 2)

- Upper limits on the $\sigma \times BR$ are determined using a Bayesian method with a uniform positive prior probability density for the signal cross section.
 - Z' boson with LFV couplings is excluded up to mass 4.1 // 4.2 // 5.0 TeV in the $\mu\tau$ // $e\tau$ // $e\mu$ channels.
 - τ -sneutrino derived from RPV SUSY is excluded up to mass 3.7 TeV in the $\mu\tau$ and $e\tau$ channels, and up to 4.2 TeV in the $e\mu$ channel, for the coupling hypothesis $\lambda = 0.1$ (λ controls decay of τ -sneutrino).
 - The cross section limit is translated into **exclusion bounds in the mass vs coupling plane** (using the narrow width approximation formula of the RPV signal cross section).
 - Quantum black holes derived from an ADD model with n=4 extra dimensions are excluded up to threshold mass 5.1 // 5.3 // 5.7 TeV in the $\mu \tau$ // $e \tau$ // $e \mu$ channels.
- Also model independent cross section limits ($\sigma \times BR \times A \times \epsilon$) are derived.

