Search for invisible particles produced in association with single-top quarks with the ATLAS detector using Run-2 data

ICHEP 2022, Bologna

July 7, 2022

Josep Navarro González, on behalf of the ATLAS collaboration

Introduction

- There is long-standing evidence for dark matter (DM) from observations of its gravitational interaction.
- Few properties are known: neutral, massive, weak interaction,... \rightarrow assume WIMPs here.
- DM searches at colliders are complementary to direct and indirect detection.
- They can directly probe the production mechanism.
- In order to describe the DM production, different approaches can be followed:

Effective Field Theories (EFT)

- Dark matter production mechanism unspecified
- Mostly considered during Run-1.

Simplified models

- Signature-driven first-order description of new physics.
- Bridge gap between EFT and complete models.

Complete Models

- Dark matter predicted as part of a complete theory.
- Theoretically "more sound".

Introduction

- As introduced by Matthias Saimpert, searches for dark matter with the ATLAS detector are essential but they have two main difficulties:
 - DM does not interact with the detector \rightarrow Identify large amount of Missing Energy.
 - Not possible to trigger events with DM only \rightarrow Search in associated production with SM particles.
- Many BSM theories predict production of DM associated with **top quarks**: ٠
 - Heaviest fundamental particle in the SM.
 - Exotics particles (DM mediators) could decay preferentially to top guarks.
- Two searches targeting different final states are here presented:

Missing transverse momentum

Inferred from momentum

conservation

Invisible

Introduction

- As introduced by <u>Matthias Saimpert</u>, searches for dark matter with the ATLAS detector are essential but they have two main difficulties:
 - DM does not interact with the detector \rightarrow Identify large amount of Missing Energy.
 - Not possible to trigger events with DM only \rightarrow Search in associated production with SM particles.
- Many BSM theories predict production of DM associated with **top quarks**:
 - Heaviest fundamental particle in the SM.
 - Exotics particles (DM mediators) could decay preferentially to top quarks.
- Two searches targeting different final states are here presented:

 \rightarrow Both searches have been performed using the full LHC Run-2 data (139 fb⁻¹ collected during 2015-2018).

1) top quark + invisible (*Mono-top*)

ATLAS-CONF-2022-036

Models considered

- A simplified model for a DM production has been considered using the same baseline last round analysis (<u>arXiv:1812.09743</u>).
- The single production of Vector-Like Top is also studied, considering the invisible decay of the Z boson.

5

ATLAS-CONF-2022-036

Event selection

 $E_T^{miss} \ge 250 \text{ GeV}$

Exactly zero leptons (hadronic channel)

At least one boosted large-R jet associated to the top quark \rightarrow use <u>top-tagging</u> for S/B separation!

- Main backgrounds: $t\bar{t}$ and **Z/W+jets** \rightarrow constrained in the control regions.
- Consider a Multivariate Analysis (MVA) approach to discriminate signal (*XGBoost*):
 - E_T^{miss} -based variables and ΔR_{max} among the most important features in the training.
- Further reduce backgrounds by selection requirement on the *number of b-jets* and $\Delta \phi_{min}$:

* Maximum ΔR between two small-R jets.

Fit to data

Fit to data under the background-only
hypothesis yields to measure the
normalization of the mainNF.backgrounds :NF.

	ATLAS Prelim	inary	Resonant	Non-resor	nant 🚽 🛧 VL	.Q
	· · · ·		0.85 ± 0.22	0.83 ± 0.21	0.82 ± 0.20	
ets	_		0.92 ± 0.18	0.82 ± 0.15	0.70 ± 0.15	
	0	2	4	6	8	10

- Values obtained for the 3 different models fit are fully consistent within each other.
- Good description of data in the **control** and **validation** regions of the post-fit background model:

Resonant DM interpretation

- No significant excess above the SM expectation is found in any of the Resonant DM model signal regions:
- Interpret result in terms of expected and observed upper limit on the signal cross section:

the Resonant model is excluded for m_{ϕ} < 5000 GeV.

ATLAS-CONF-2022-036

Non-Resonant DM interpretation

- No significant excess above the SM expectation is found in any of the Non-Resonant DM model signal regions:
- Interpret result in terms of expected and observed upper limit on the signal cross section:

Considering the parameters a = 0.5, g_{χ} = 1 and m_{χ} = 10 GeV,

the Non-Resonant DM model is excluded for $m_v < 2800$ GeV.

ATLAS-CONF-2022-036

Vector-Like Quarks interpretation

- No significant excess above the SM expectation is found in any of the VLQ model signal regions:
- Interpret result in terms of expected and observed upper limit on the signal cross section:

Considering the parameter $k_{\rm T}$ = 0.5 and the Vector-Like Top (VLT) being a singlet,

the VLT masses are excluded for $m_T < 2300$ GeV.

2) top quark + W boson + invisible

ATLAS-CONF-2022-012

Model considered

This signature has been searched considering the **2HDM+a** model.

- This theory is an extension of the Standard Model:
 - **Two** Higgs doublets (h (SM Higgs), H, H^{\pm} , A).
 - New **pseudoscalar DM mediator (a)** that couples to a fermionic DM candidate.
- This model is the simplest ultraviolet-complete and renormalizable extension of the simplified pseudoscalar DM mediator model characterized by a wide range of signature.
- Several free parameters:
 - Different masses: **m**_H, **m**_{H[±]}, **m**_A and **m**_a.
 - **tan***β*: ratio of the *vev* of the two Higgs doublets.
 - **sin***θ*: Mixing angle between the pseudoscalar mediator a and A.

Event selection

1 b-jet (from top decay) 0-1 electrons/muons $E_T^{miss} \ge 250 \text{ GeV}$ if $H^{\pm} >> m_W + m_a$, W from H^{\pm} has high p_T \rightarrow Use <u>W-tagging for S/B separation!</u>

Main backgrounds: $t\bar{t}$, **Z/W+jets** and $ttZ \rightarrow$ constrained in the control regions.

Reduce backgrounds by selection requirements on various transverse mass variables such as $m_T(W)$, $m_T(l, E_T^{miss})$, am_{T2} , etc...

Fit to data

Fit to data under the background-only hypothesis yields to measure the **normalization of the main backgrounds.**

- Good description of data in the **control** and **validation** regions of the post-fit background model.
- No significant excess above the SM expectation is found in any of the **signal regions**.

2HDM+a interpretation

ATLAS-CONF-2022-012

- Interpret result in terms of expected and observed exclusion limits on the 2HDM+a model.
- Combined with previous analysis (<u>arXiv:2011.09308</u>) 2L channel.

- + 0L/1L channel with strongest exclusion for $m_{H^{\pm}}$ > 700 GeV.
- 2L channel (dominant for $m_{H^{\pm}}$ < 700 GeV).
- The 2HDM+a model is excluded for masses between m_a =100-400 GeV and $m_{H^{\pm}}$ =400–1500 GeV.

Conclusions

- Different searches for invisible particles produced in association with single-top quarks using full Run-2 data have been presented.
- The results have been interpreted in the context of different scenarios:
 - DM simplified model (Monotop Resonant and Non-resonant production).
 - Single Vector-Like Top production.
 - 2HDM+a model.
- No signal excess has been found in any of the the searches.
- For the different models considered, the most stringent constraints up to date have been provided. More results covering a wider parameter space are about to come.
- Stay tuned!
- Thanks for your attention!!

BACKUP

Monotop production at the LHC

Monotop signature:

+ A single top quark

+ Large amount of missing energy (one or several undetected <u>neutral particles</u>)

• No such process is possible in the SM at tree level.

• Production of such signatures can only be possible at next-to-leading order (NLO).

• For example, the direct production of a **top quark** and a **Z boson decaying into a pair of neutrinos**, without any additional quark, is suppressed by the Glashow–Iliopoulos–Maiani (GIM) mechanism:

Monotop: XGB features

Variable	Description	Resonant DM model	Non-resonant DM model	VLQ
$\overline{E_{\mathrm{T}}^{\mathrm{miss}}}$	Missing transverse momentum	\checkmark	\checkmark	\checkmark
Ω	$E_{\mathrm{T}}^{\mathrm{miss}}$ and large- R jet p_{T} balance: $\frac{E_{\mathrm{T}}^{\mathrm{miss}} - p_{\mathrm{T}}(J)}{E_{\mathrm{T}}^{\mathrm{miss}} + p_{\mathrm{T}}(J)}$	\checkmark	\checkmark	\checkmark
$N_{\rm jets}$	Small- R jet multiplicity	\checkmark	\checkmark	\checkmark
$\Delta R_{ m max}$	Maximum ΔR between two small- R jets	\checkmark	\checkmark	\checkmark
$m_{\rm T,min}(E_{\rm T}^{\rm miss},\!b\text{-jet})$	Transverse mass of $E_{\rm T}^{\rm miss}$ and the closest <i>b</i> -tagged jet.	\checkmark	\checkmark	\checkmark
$m_{ m top-tagged}$ jet	Mass of the large- R top-tagged jet	\checkmark		\checkmark
Δp_{T} (J,jets)	Scalar difference of large- R jet $p_{\rm T}$ and the sum of $p_{\rm T}$ of all small- R jets.	\checkmark	\checkmark	
H_{T}	Sum of all small- R jet $p_{\rm T}$		\checkmark	\checkmark
$H_{\rm T}/E_{\rm T}^{\rm miss}$	Ratio of $H_{\rm T}$ and $E_{\rm T}^{\rm miss}$		\checkmark	\checkmark
$\Delta E(E_{\rm T}^{\rm miss},\!J)$	Energy difference between $E_{\mathrm{T}}^{\mathrm{miss}}$ and the large- R jet		\checkmark	\checkmark
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}},J)$	Angular distance in the transverse plane between $E_{\rm T}^{\rm miss}$ and large- R jet		\checkmark	\checkmark
$p_{\mathrm{T}}(\mathrm{J})$	Large- R jet $p_{\rm T}$			\checkmark
$m_{\mathrm{T}}(E_{\mathrm{T}}^{\mathrm{miss}},J)$	Transverse mass of the $E_{\rm T}^{\rm miss}$ and large- R jet			\checkmark
$\Delta \phi(b\text{-tagged jet},J)$	Angular distance in the transverse plane between the large- R jet and the leading b -jet			\checkmark

Monotop: background modelling

A good modelling is observed in the different validation regions:

Monotop: background modelling

A good modelling is observed in the different validation regions:

Last round analysis results (Monotop)

- Dataset: 2015-206 (**36.1 fb**⁻¹).
- **Cut based** analysis.
- **Topological** jets were used.
- Combined leptonic (negligible contribution) and hadronic channels.
- Monotop: Excluded m_{ϕ} up to 3.4 TeV and m_{ν} up to 2 TeV.
- VLQ: No m_{τ} exclusion for k_{τ} = 0.5.

t + W + invisible region definitions

Variable	$CR_{tW_{0L}}(t\bar{t})$	$CR_{tW_{1L}}(t\bar{t})$	CR (W+jets)	CR (Z + jets)
Trigger	$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single-lepton
$E_{\rm T}^{\rm miss} [{\rm GeV}]$	≥ 250	≥ 250	≥ 250	≤ 120
$E_{\mathrm{T},\ell\ell}^{\mathrm{miss}}$ [GeV]	—	—	—	≥ 250
$\mathcal{S}_{E_{ au}^{ ext{miss}}}$	_	—	≥ 15	_
$\mathcal{S}_{E_{\mathrm{T},\ell\ell}^{\mathrm{miss}}}$	_	—	—	≥ 14
$\min[\Delta\phi(\text{jet}_{1-4}, E_{\text{T}}^{\text{miss}})]$	≥ 0.5	≥ 0.5	≥ 0.5	_
$\min[\Delta\phi(\text{jet}_{1-4}, E_{\text{T},\ell\ell}^{\text{miss}})]$	—	—	—	≥ 0.5
Number of baseline leptons	1	1	1	2
Number of signal leptons	1	1	1	2 (SF-OS)
$p_{\mathrm{T}}^{\ell_1} \; [\mathrm{GeV}]$	≥ 30	≥ 30	≥ 30	≥ 30
$p_{\mathrm{T}}^{\ell_2} \; [\mathrm{GeV}]$	_	_	—	≥ 20
Number of signal jets	≥ 4	≥ 3	≥ 3	≥ 4
$p_{\mathrm{T}}^{\mathrm{j}_1} \; [\mathrm{GeV}]$	≥ 100	≥ 30	≥ 30	≥ 100
$p_{\mathrm{T}}^{\mathrm{j}_2}~\mathrm{[GeV]}$	≥ 60	≥ 30	≥ 30	≥ 60
$p_{\mathrm{T}}^{\mathrm{j}_3}~\mathrm{[GeV]}$	≥ 60	≥ 30	≥ 30	≥ 60
$p_{\mathrm{T}}^{\mathrm{j}_4}~\mathrm{[GeV]}$	≥ 40	_	_	≥ 40
Number of b -tagged jets	≥ 1	≥ 2	≥ 1	≥ 1
$p_{\mathrm{T}}^{\mathrm{b}_1}$ [GeV]	≥ 50	≥ 50	≥ 50	≥ 50
$p_{\mathrm{T}}^{\overline{\mathrm{b}}_2}$ [GeV]	≤ 50	≥ 50	≤ 50	≤ 50
Number of W-tagged jets $(N_{W-\text{tagged}}^{J;R=1.0})$	≥ 1	_	= 0	≥ 0
$\Delta R_{W-\text{tagged.b}_1}$	≥ 1.0	_	_	_
$m_{W-\text{tagged,b}_1}$ [GeV]	≥ 220	_	—	_
$m_{\ell\ell} \ [GeV]$	—	_	_	\in [81,101]
$m_{\rm T}(b_1, E_{{\rm T},\ell\ell}^{ m miss}) ~[{ m GeV}]$	_	_	_	≥ 180
$m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) ~[{ m GeV}]$	< 130	≥ 130	$\in [40, 100]$	_
$am_{\mathrm{T2}} \; [\mathrm{GeV}]$	< 180	< 180	≥ 180	_
$m_{\mathrm{W}}^{\mathrm{had}} \ [\mathrm{GeV}]$	—	-	< 60	_

t + W + invisible region definitions

Variable	CR (Single t)	$\operatorname{CR}(t\bar{t}Z)$		
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single-lepton		
$E_{\rm T}^{\rm miss}$ [GeV]	≥200	_		
$E_{\mathrm{T},\ell\ell}^{\mathrm{miss}}$ [GeV]	_	≥ 140		
$\min[\Delta\phi(\text{jet}_{1-4}, E_{\text{T}}^{\text{miss}})]$	≥ 0.5	_		
Number of baseline leptons	2	3		
Number of signal leptons	2 (OS)	3 (at least one SF-OS pair)		
$p_{\mathrm{T}}^{\ell_1} \; [\mathrm{GeV}]$	≥ 25	≥ 30		
$p_{\mathrm{T}}^{\ell_2} \mathrm{[GeV]}$	≥ 20	≥ 20		
$p_{\mathrm{T}}^{\ell_3} \mathrm{[GeV]}$	—	≥ 20		
Number of signal jets	≥ 1	≥ 3		
$p_{\rm T}^{\mathbf{j}_1} [{\rm GeV}]$	≥ 50	≥ 30		
$p_{\rm T}^{\mathbf{j}_2}$ [GeV]	_	≥ 30		
$p_{\mathrm{T}}^{\mathrm{j}_3}~\mathrm{[GeV]}$	—	≥ 30		
Number of b -tagged jets	≥ 1	≥ 2		
$p_{\mathrm{T}}^{\mathrm{b}_{1}} \; [\mathrm{GeV}]$	≥ 50	≥ 30		
$p_{\rm T}^{\rm b_2}~[{ m GeV}]$	—	≥ 30		
$m_{\ell\ell} \ [GeV]$	$\geq 40, \notin [71,111]$ if SF	\in [71,111] for at least one SF-OS pair		
$m_{\mathrm{T2}} \; \mathrm{[GeV]}$	< 100	_		
$m_{b\ell}^{\min}$ [GeV]	> 170	_		
$m_{b\ell}^{ m t} \; [{ m GeV}]$	> 150	_		

t + W + invisible region definitions

Variable	$SR_{tW_{0L}}$	$\mathrm{SR}^{\mathrm{lep.top}}_{\mathrm{tW}_{1\mathrm{L}}}$	$\mathrm{SR}^{\mathrm{had.top}}_{\mathrm{tW}_{1\mathrm{L}}}$
Trigger	$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss}$	$E_{\mathrm{T}}^{\mathrm{miss}}$
$E_{\rm T}^{\rm miss} [{\rm GeV}]$	≥ 250	≥ 250	≥ 250
${\cal S}_{E_{ au}^{ m miss}}$	≥ 14	≥ 15	-
$\min[\Delta\phi(\text{jet}_{1-4}, E_{\text{T}}^{\text{miss}})]$	≥ 0.9	≥ 0.5	≥ 0.5
Number of baseline leptons	0	1	1
Number of signal leptons	0	1	1
$p_{\mathrm{T}}^{\ell_1} \; [\mathrm{GeV}]$	_	≥ 30	≥ 30
Number of signal jets	≥ 4	≥ 2	≥ 3
$p_{\mathrm{T}}^{\mathbf{j}_1} \mathrm{[GeV]}$	≥ 100	≥ 50	≥ 50
$p_{\mathrm{T}}^{\mathrm{j}_2} \; \mathrm{[GeV]}$	≥ 60	≥ 30	≥ 30
$p_{\mathrm{T}}^{\mathrm{j}_3}~\mathrm{[GeV]}$	≥ 60	-	≥ 30
$p_{\mathrm{T}}^{\mathrm{j}_4} \; \mathrm{[GeV]}$	≥ 40	-	-
Number of <i>b</i> -tagged jets	≥ 1	≥1	≥ 1
$p_{\mathrm{T}}^{\mathrm{b}_1} \; [\mathrm{GeV}]$	≥ 50	≥ 50	≥ 50
$p_{\mathrm{T}}^{\overline{\mathrm{b}}_2} \mathrm{[GeV]}$	≤ 50	≤ 50	≤ 50
Number of W-tagged jets $(N_{W-\text{tagged}}^{J;R=1.0})$	≥ 1	≥ 1	-
$p_{\rm T}^{J;R=1.0}$ [GeV]	≥ 200	≥ 200	-
$\Delta R_{W-\mathrm{tagged,b}_1}$	≥ 1.0	-	-
$m_{W-\text{tagged},b_1}$ [GeV]	≥ 220	-	-
$m_{\rm T}({\rm b}_1, E_{\rm T}^{\rm miss})$ [GeV]	≥ 180	-	-
$m_{\mathrm{b}_1,\mathrm{b}_1}$ [GeV]	-	≥ 200	≤ 200
$m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) ~[{ m GeV}]$	-	≥ 130	≥ 200
$am_{\mathrm{T2}} \; [\mathrm{GeV}]$		≥ 180	≥ 180
$m_{\mathrm{W}}^{\mathrm{had}} \mathrm{[GeV]}$	-	-	≥ 60

t + W + invisible background modelling

t + W + invisible background modelling

