

CONNECTING SCIENCES

Slow-roll inflation in Palatini F(R) gravity

Antonio Racioppi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

ICHEP 2022, July 7th, 2022

based on JHEP 06 (2022) 106 with C. Dioguardi (Taltech & NICPB) & E. Tomberg (NICPB)

Inflation with R² term in the Palatini formalism, Enckell et al. 1810.05536

$$S_{J} = \int d^{4}x \sqrt{-g_{J}} \left[\frac{1}{2} \left(R + \alpha R^{2} \right) - \frac{1}{2} g_{J}^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right] \qquad M_{P} = 1$$

- Main results:
 - universally flat Einstein-frame scalar potential

$$U = \frac{V}{1 + 8\alpha V} = \frac{U^0}{1 + 8\alpha U^0}$$

 \dots^{0} means the same quantity but for $\alpha = 0$

simple inflationary preditions:

$$N_e = N_e^0$$

$$A_s = A_s^0$$

$$n_s = n_s^0$$

$$r = \frac{r^0}{1 + 8\alpha U^0} = \frac{r_0}{1 + 12\pi^2 \alpha A_s r^0}$$

♦ $\alpha \gg 1 \Rightarrow r \rightarrow 0$ regardless of the initial V

• Q's: What makes $F(R) = R + \alpha R^2$ special? Is there any $F(R) \Rightarrow r \rightarrow 0$?

• We start with the following action in the Palatini formulation

$$S_{J} = \int d^{4}x \sqrt{-g_{J}} \left[\frac{1}{2} F(R(\Gamma)) + \mathcal{L}(\phi) \right]$$
$$\mathcal{L}(\phi) = -\frac{1}{2} k(\phi) g_{J}^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi)$$

• we rewrite the F(R) term using the auxiliary field ζ , obtaining

$$S_{J} = \int d^{4}x \sqrt{-g}_{J} \left[\frac{1}{2} \left(F(\zeta) + F'(\zeta) \left(R(\Gamma) - \zeta \right) \right) + \mathcal{L}(\phi) \right]$$

we move to the Einstein frame

$$S_{E} = \int d^{4}x \sqrt{-g_{E}} \left[\frac{R}{2} - \frac{1}{2} g_{E}^{\mu\nu} \partial_{\mu} \chi \partial_{\nu} \chi - U(\chi, \zeta) \right]$$
$$U(\chi, \zeta) = \frac{V(\phi(\chi))}{F'(\zeta)^{2}} - \frac{F(\zeta)}{2F'(\zeta)^{2}} + \frac{\zeta}{2F'(\zeta)}$$
$$\frac{\partial \chi}{\partial \phi} = \sqrt{\frac{k(\phi)}{F'(\zeta)}} \quad \text{(canonically normalized scalar)}$$

• N.B. ζ stays auxiliary! Not dynamical like in metric gravity

The full EoM for ζ is

$$2F(\zeta) - \zeta F'(\zeta) - 2k(\phi) \partial^{\mu} \phi \partial_{\mu} \phi F'(\zeta) - 4V(\phi) = 0$$

- The standard procedure would be now to solve the EoM and determine $\zeta(\phi, \partial^{\mu}\phi\partial_{\mu}\phi)$ and insert it back into the action.
- However not always solvable for any $F(R) \Rightarrow SR$ approximation
- The EoM for ζ , assuming SR i.e. $k(\phi)g_J^{\mu\nu}\partial_\mu\phi\partial_\nu\phi \ll V(\phi)$ is

with

$$G(\zeta) = \frac{1}{4} \left[2F(\zeta) - \zeta F'(\zeta) \right]$$

 $G(\zeta) = V(\phi)$

- Still not always solvable for any F(R)
- On the other hand it is still possible to perform inflationary computations. The trick is to use the auxiliary field ζ as a computational variable and G = V as a constraint.

• first of all $V \rightarrow G$ in U:

$$U(\chi,\zeta) = \frac{V(\phi(\chi))}{F'(\zeta)^2} - \frac{F(\zeta)}{2F'(\zeta)^2} + \frac{\zeta}{2F'(\zeta)}$$

= ...
= $\frac{1}{4}\frac{\zeta}{F'(\zeta)} = U(\zeta)$

- valid for any F(R) and $V(\phi)$
- what changes is the actual solution for ζ
- also valid for the pure F(R) case $(\mathcal{L}(\phi) = 0)$
- We already knew that $F(R) = R + \alpha R^2$ gives a flat U for $\alpha \gg 1$ Enckell et al. 1810.05536
- Now we have shown that no other F(R) can give such a result.

- SR computations \rightarrow we need derivatives of U
- we start with the 1st derivative:

$$\frac{\partial}{\partial \chi} U(\zeta) = \boxed{\frac{\partial \zeta}{\partial \chi}} \frac{\partial}{\partial \zeta} U(\zeta) \quad \leftarrow \text{ we need this}$$

• $G(\zeta) = V(\phi) \Rightarrow \phi = V^{-1}(G)$, the inverse function of $V(\phi)$

$$g(\zeta) = \frac{\partial \zeta}{\partial \chi} = \frac{\partial \zeta}{\partial \phi} \frac{\partial \phi}{\partial \chi} = \dots$$
$$= \sqrt{\frac{F'(\zeta)}{k(V^{-1}(G))} \frac{1}{\frac{\partial G}{\partial \zeta} \frac{\partial V^{-1}}{\partial G}}}$$

This allows us to easily express higher derivatives:

$$\frac{\partial^2}{\partial \chi^2} U(\zeta) = g(\zeta) \frac{\partial}{\partial \zeta} \left(g(\zeta) \frac{\partial U}{\partial \zeta} \right) = gg' U' + g^2 U'', \dots$$

where primes denote derivatives w.r.t. ζ .

we have a method for computing SR parameters

KBFI • Inflationary observables •

SR parameters

$$\epsilon(\zeta) = \frac{1}{2} \left(\frac{\partial U/\partial \chi}{U} \right)^2 = \frac{1}{2} g^2 \left(\frac{U'}{U} \right)^2$$
$$\eta(\zeta) = \frac{\partial^2 U/\partial \chi^2}{U} = \frac{gg'U' + g^2U''}{U}$$

observables

$$N_{e} = \int_{\chi_{f}}^{\chi_{N}} \frac{U}{\partial U/\partial \chi} d\chi = \int_{\zeta_{f}}^{\zeta_{N}} \frac{U}{g^{2} U'} d\zeta$$

$$r(\zeta) = 16\epsilon(\zeta) = 8g^{2} \left(\frac{U'}{U}\right)^{2}$$

$$n_{s}(\zeta) = 1 + 2\eta(\zeta) - 6\epsilon(\zeta) = 1 + \frac{2g}{U^{2}} \left(g'U'U + gU''U - 3gU'^{2}\right)$$

$$A_{s}(\zeta) = \frac{U}{24\pi^{2}\epsilon(\zeta)} = \frac{U^{3}}{12\pi^{2}g^{2}U'^{2}}$$

• N.B. U contains info from F(R), while V-info is in g

• We checked $R + \alpha R^2 \rightarrow OK! \rightarrow backup$ slides

• We study the test scenario:

$$F(R) = R + \alpha R^n$$
, $k(\phi) = 1$, $V(\phi) = \frac{m^2}{2}\phi^2$.

Solutions of the G = V problem:

- 1. $n < 2 \rightarrow \text{all good!}$
- 2. $n > 2 \rightarrow$ only effective description

$\bigoplus_{\mathsf{NICPB}} \mathsf{KBFI} \bullet \underline{G > 0 \text{ problem}} \bullet$

Figure: $G(\zeta)$ (left) and $V(\phi) = \phi^2$ (right) for $F(R) = R + R^n$ with n = 3/2 (continuous) and n = 5/2 (dashed).

n=3/2 For each ϕ , even though we cannot compute it analytically, we can always find a ζ so that $G(\zeta) = V(\phi)$

n=5/2 For each ϕ , we cannot always find a ζ so that $G(\zeta) = V(\phi)$ \rightarrow effective description: inflation must happen before ζ_{max}

We can compute the phenomenological parameters:

$$\begin{split} N_{e} &= \left[\frac{\zeta \left(n - (n - 1)\right)}{8m^{2}} {}_{2}F_{1}\left(1, \frac{1}{n - 1}; \frac{n}{n - 1}; (n - 2)\alpha\zeta^{n - 1}\right)\right]_{\zeta = \zeta_{f}}^{\zeta = \zeta_{N}} \\ r(\zeta_{N}) &= \frac{64m^{2}}{\zeta_{N}} \frac{1 + \alpha(2 - n)\zeta_{N}^{n - 1}}{1 + \alpha n\zeta_{N}^{n - 1}} \\ n_{s}(\zeta_{N}) &= 1 - \frac{8m^{2}}{\zeta_{N}} \frac{2 + \alpha(n - 2)(n - 3)\zeta_{N}^{n - 1}}{1 + \alpha(2 - n)n\zeta_{N}^{n - 1}} \\ A_{s}(\zeta_{N}) &= \frac{1}{384\pi^{2}m^{2}} \frac{\zeta_{N}^{2}}{1 + \alpha(2 - n)\zeta_{N}^{n - 1}} \\ where we used the hypergeometric function \\ {}_{2}F_{1}(a, b, c, z) = \sum_{k=0}^{\infty} \frac{(a)_{n}(b)_{n} z^{n}}{(c)_{n} n!} \end{split}$$

with

$$(q)_n = \frac{\Gamma(q+n)}{\Gamma(q)}$$

the (rising) Pochhammer symbol

Antonio Racioppi

ICHEP 2022, July 7th, 2022

- We studied single field inflation embedded in Palatini F(R) gravity
- We explained why Palatini $R + R^2$ is so unique
- We found a method to perform inflationary computations even though the EoM of ζ is not solvable.
- We tested the method on a couple of examples
- Unexpected outcome/future outlook:
 - *R* + *Rⁿ*, *n* > 2 is problematic ⇒ hint for a Palatini UV theory of gravity?
 - *n* = 2 quite unstable configuration

Grazie! - Thank you! - Aitäh!

KBFI • Inflationary computations •

Assuming SR, the inflationary dynamics is described by the SR parameters and the N_e . Assuming that we solved EoM $\zeta(\phi)$ and field redef. $\phi(\chi)$, the SR parameters are

$$\equiv \frac{1}{2} \left(\frac{1}{U} \frac{\mathrm{d}U}{\mathrm{d}\chi} \right)^2, \quad \eta \equiv \frac{1}{U} \frac{\mathrm{d}^2 U}{\mathrm{d}\chi^2}$$

and the number of e-folds as

$$N = \int_{\chi_f}^{\chi_N} \mathrm{d}\chi \, U\left(\frac{\mathrm{d}U}{\mathrm{d}\chi}\right)^{-1}$$

where the field value at the end of inflation, χ_f , is defined via $\epsilon(\chi_f) = 1$. The field value χ_i at the time a given scale left the horizon is given by the corresponding N. To reproduce the correct A_s , the potential has to satisfy

$$\ln(10^{10}A_s) = 3.044 \pm 0.014$$
 where $A_s = \frac{1}{24\pi^2} \frac{U(\chi_N)}{\epsilon(\chi_N)}$

and the other two main observables, i.e. the spectral index and the tensor-to-scalar ratio are expressed as

$$n_s \simeq 1 + 2\eta - 6\epsilon$$

 $r \simeq 16\epsilon$

Antonio Racioppi

ICHEP 2022, July 7th, 2022

• FLAT potentials are strongly FAVORED!!!

The properties of spacetime are essentially described by two objects:

- the affine connection: $\Gamma^{\lambda}_{\alpha\beta}$
- the metric tensor: $g_{\mu\nu}$

The properties of spacetime are essentially described by two objects:

- the affine connection: $\Gamma^{\lambda}_{\alpha\beta}$
- the metric tensor: $g_{\mu\nu}$

 $\Gamma^{\lambda}_{\alpha\beta}$ describes the parallel transport of tensor fields along a given curve. If the spacetime is curved, parallel transport around a closed path, after a full cycle, results in a finite mismatch. The curvature is uniquely determined by the Riemann tensor $R^{\mu}_{\alpha\nu\beta}(\Gamma)$ whose contraction $R_{\alpha\beta}(\Gamma) \equiv R^{\mu}_{\alpha\mu\beta}(\Gamma)$ gives the Ricci tensor¹

¹We consider only $\Gamma^{\lambda}_{\alpha\beta} = \Gamma^{\lambda}_{\beta\alpha}$ i.e. torsion free space-time.

S

The properties of (torsionless) spacetime are essentially described by:

- the affine connection: $\Gamma^{\lambda}_{\alpha\beta} \rightarrow$ parallel transport
- the metric tensor: $g_{\mu\nu} \rightarrow \text{distance}$

The connection coefficients and metric tensor are fundamentally independent quantities. They exhibit no *a priori* known relationship. If they are to have any relationship, it must derive from

- additional constraints (metric formalism $\nabla_{\alpha}g_{\mu\nu} = 0$)
- EoM (Palatini formalism)

The properties of spacetime are essentially described by two objects:

- the affine connection: $\Gamma^{\lambda}_{\alpha\beta}$
- the metric tensor: $g_{\mu\nu}$

 $g_{\mu\nu}$ allows us to introduce the notion of distance.

The connection coefficients and metric tensor are fundamentally independent quantities. They exhibit no *a priori* known relationship, and if they are to have any it must derive from additional constraints (metric formalism) or geometrodynamics (Palatini formalism).

 In non-minimally coupled theories, metric and Palatini formalism give different physical theories. (Koivisto & Kurki-Suonio: arXiv:0509422)

KBFI • Metric vs Palatini formulation •

$$Jordan \text{ frame: } \sqrt{-g^{J}}\mathcal{L}^{J} = \sqrt{-g^{J}} \begin{bmatrix} \frac{1}{2}F(R) - \frac{1}{2}(\partial\phi)^{2} - V(\phi) \\ = \sqrt{-g^{J}} \begin{bmatrix} \frac{1}{2}f(\zeta)R - \frac{1}{2}(\partial\phi)^{2} - V(\phi,\zeta) \end{bmatrix}$$

$$Metric$$

$$\nabla_{\alpha}g_{\mu\nu}^{J} = 0 \Rightarrow \Gamma = \text{Levi-Civita } \Gamma = \overline{\Gamma}$$

$$\overline{\Gamma}^{\lambda}_{\alpha\beta} = \frac{1}{2}g^{\lambda\rho}(\partial_{\alpha}g_{\beta\rho} + \partial_{\beta}g_{\rho\alpha} - \partial_{\rho}g_{\alpha\beta})$$

$$\Gamma^{\lambda}_{\alpha\beta} = \overline{\Gamma}^{\lambda}_{\alpha\beta} + \delta^{\lambda}_{\alpha}\partial_{\beta}\omega + \delta^{\lambda}_{\beta}\partial_{\alpha}\omega - g_{\alpha\beta}\partial^{\lambda}\omega$$

$$\omega(\zeta) = \ln \Omega(\zeta), \quad g_{\mu\nu}^{E} = \Omega(\zeta)^{2}g_{\mu\nu}, \quad \Omega(\zeta)^{2} = f(\zeta) = F'(\zeta)$$

$$Metric \left(\Gamma_{E} = \overline{\Gamma}_{E}\right)$$

$$K(\phi, \zeta) \rightarrow 2 \text{ dyn. fields: } \phi \& \zeta$$

$$Metrio \operatorname{Reizer} \left(\Gamma_{E} = \overline{\Gamma}_{E}\right)$$

$$K(\phi, \zeta) = 4 \operatorname{dyn. fields: } \phi \& \zeta$$

$$Metrio \operatorname{Reizer} \left(\Gamma_{E} = \Gamma_{E}\right)$$

$$K(\phi, \zeta) = 4 \operatorname{dyn. fields: } \phi \& \zeta$$

$$Metrio \operatorname{Reizer} \left(\Gamma_{E} = \Gamma_{E}\right)$$

$$K(\phi, \zeta) = K(\phi) \rightarrow \phi \operatorname{dyn. \& \zeta \operatorname{aux.} Metrio \operatorname{Reizer} F(\theta)$$

$$Metrio \operatorname{Reizer} \left(\Gamma_{E} = \Gamma_{E}\right)$$

• we start with Palatini
$$F(R)$$
 action alone

$$S_J = \int \mathrm{d}^4 x \sqrt{-g_J} \frac{1}{2} F(R(\Gamma))$$

• we rewrite the F(R) term using the auxiliary field ζ

$$S_{J} = \int d^{4}x \sqrt{-g}_{J} \left[\frac{1}{2} F'(\zeta) R(\Gamma) - V(\zeta) \right]$$
$$V(\zeta) = \frac{-F(\zeta) + \zeta F'(\zeta)}{2} F' = \frac{\partial F}{\partial \zeta}$$

~ before ($\zeta = \phi^2, F' = f$) but NO kin term for ζ !!!

we move to the Einstein frame

$$S_E = \int d^4x \sqrt{-g_E} \left[\frac{R}{2} - U(\zeta) \right]$$
$$U(\zeta) = -\frac{F(\zeta)}{2F'(\zeta)^2} + \frac{\zeta}{2F'(\zeta)}$$

N.B. Still no kinetic term for ζ !!!

ι

• ζ 's EoM: $U'(\zeta) = 0 \rightarrow a$ bit of albegra:

$$G(\zeta) = \frac{1}{4} \left[2F(\zeta) - \zeta F'(\zeta) \right] = 0$$

$$\zeta = \zeta^* \qquad \rightarrow \qquad F(\zeta^*) = \frac{1}{2} \zeta^* F'(\zeta^*)$$

with $F', F'' \neq 0$

• inserting $\zeta = \zeta^*$ in U we obtain $U(\zeta^*) = -\frac{\zeta^* F'(\zeta^*)}{2F'(\zeta^*)^2} + \frac{\zeta^*}{4F'(\zeta^*)} = \frac{1}{4} \frac{\zeta^*}{F'(\zeta^*)}$ i.e. a CC

• therefore pure Palatini F(R) is equivalent to GR + CC

=

- SR computations \rightarrow we need derivatives of U
- we start with the 1st derivative:

$$\frac{\partial}{\partial \chi} U(\zeta) = \boxed{\frac{\partial \zeta}{\partial \chi}} \frac{\partial}{\partial \zeta} U(\zeta) \quad \leftarrow \text{ we need this!}$$
$$= \frac{\partial \phi}{\partial \chi} \frac{\partial}{\partial \phi} U(\zeta) = \sqrt{\frac{F'(\zeta)}{k(\phi)}} \frac{\partial}{\partial \phi} U(\zeta)$$

•
$$G(\zeta) = V(\phi) \Rightarrow \phi = V^{-1}(G)$$
, the inverse function of $V(\phi)$

$$= \sqrt{\frac{F'(\zeta)}{k(V^{-1}(G))}} \frac{\partial \zeta}{\partial \phi} \frac{\partial U}{\partial \zeta} = \sqrt{\frac{F'(\zeta)}{k(V^{-1}(G))}} \frac{1}{\frac{\partial \phi}{\partial \zeta}} \frac{\partial U}{\partial \zeta} = \sqrt{\frac{F'(\zeta)}{k(V^{-1}(G))}} \frac{1}{\frac{\partial V^{-1}}{\partial \zeta}} \frac{\partial U}{\partial \zeta} =$$

$$\sqrt{\frac{F'(\zeta)}{k(V^{-1}(G))}}\frac{1}{\frac{\partial G}{\partial \zeta}}\frac{\partial V^{-1}}{\partial G}}\frac{\partial U}{\partial \zeta}=\frac{\partial}{\partial \chi}U(\zeta)$$

• Summarizing:

$$\frac{\partial \zeta}{\partial \chi} = \sqrt{\frac{F'(\zeta)}{k(V^{-1}(G))}} \frac{1}{\frac{\partial G}{\partial \zeta} \frac{\partial V^{-1}}{\partial G}} \equiv g(\zeta), \qquad \frac{\partial}{\partial \chi} f(\zeta) = g(\zeta) \frac{\partial f(\zeta)}{\partial \zeta}$$

N.B. The derivative can be explicitly computed as long as V is invertible.

This allows us to easily express higher derivatives:

$$\frac{\partial^2}{\partial\chi^2}U(\zeta) = g(\zeta)\frac{\partial}{\partial\zeta}\left(g(\zeta)\frac{\partial U}{\partial\zeta}\right) = gg'U' + g^2U'', \ldots$$

where primes denote derivatives w.r.t. ζ .

 we have a method for computing SR parameters and inflationary observables!

$$G(\zeta) = \frac{1}{4} \left[2F(\zeta) - \zeta F'(\zeta) \right] = V(\phi)$$

- For $\zeta \to +\infty$, if $F(\zeta) \approx \zeta^n \Rightarrow G(\zeta) \approx (2-n)\zeta^n$ \Rightarrow with $n > 2 \Rightarrow G \to -\infty$
- Problem: $V(\infty) \rightarrow \infty \Rightarrow$ no real values for ζ
- Solutions:

$$n < 2 \implies G(+\infty) \rightarrow +\infty \implies OK!$$

n > 2 $G(0^+) \sim \zeta \Rightarrow G$ is a first a crescent function which reaches a local max and then decreases towards $-\infty$ \Rightarrow we need to ensure that inflation happens within $\zeta = 0$ and $\zeta = \text{local max}$. (in order to avoid also the bijectivity problem) \Rightarrow the model is only an effective description

•
$$F(R) = R + \alpha R^2$$
, $k(\phi) = 1$

• Let's check: $G(\zeta) = V(\phi)$

$$G(\zeta) = \frac{1}{4} \left[2F(\zeta) - \zeta F'(\zeta) \right] = \frac{1}{4} \left[2\zeta + 2\alpha\zeta^2 - \zeta(1 + 2\alpha\zeta) \right]$$
$$= \frac{1}{4} \zeta = V(\phi) = U^0 \quad \leftarrow \text{ no } \alpha!!!$$

• Einstein frame scalar potential:

$$U = \frac{1}{4} \frac{\zeta}{F'(\zeta)} = \frac{\zeta}{4 + 8\alpha\zeta} = \frac{U^0}{1 + 8\alpha U^0} \longrightarrow \mathsf{OK}!$$

• g function

$$g = \sqrt{F'(\zeta)} \frac{1}{\frac{\partial G}{\partial \zeta} \frac{\partial V^{-1}}{\partial G}} = \sqrt{1 + 2\alpha \zeta} \frac{1}{\frac{\partial V^{-1}}{\partial \zeta}}$$

inflationary observables

$$r(\zeta) = 8g^2 \left(\frac{U'}{U}\right)^2 = \left(\frac{1}{\frac{\partial V^{-1}}{\partial \zeta}}\right)^2 \frac{8}{\zeta^2} \left(\frac{1}{1+2\alpha\zeta}\right) = \frac{r^0}{1+8\alpha U^0} \to \mathsf{OK}!$$

analogously we get $N_e = N_e^0$, $A_s = A_s^0$ and $n_s = n_s^0$ Antonio Racioppi ICHEP 2022, July 7th, 2022 Slow-roll inflati

We can derive more readable expressions considering the limit $|n - 2|\alpha \rightarrow \infty$. In such a limit we can approximate the number of *e*-folds as

N.B. Valid only for $n \neq 2$

obtaining

$\mathbf{KBFI} \bullet \mathbf{Example 1.} \ n > 2 \bullet$

- full analytical expression still valid
- G > 0 during inflation \Rightarrow no $\alpha \rightarrow +\infty \Rightarrow$ given *n*, α has an upper limit
- inflation happens $[0, \zeta_{max}] \Rightarrow N_e$ is bounded from above
- we need $\zeta_N < \zeta_{\max}$ at $N_e \in [50, 60]$
- $\alpha \nearrow \Rightarrow \zeta_{\max} \searrow \text{ and } |\zeta_N \zeta_{\max}| \searrow$
- rough upper limit for α = ā when ζ_N = ζ_{max}. The limit is only rough because η has a pole at ζ = ζ_{max} meaning the loss of validity of the slow-roll approximation. Therefore the actual upper limit ā takes place for ζ_N not equal, but slightly smaller than ζ_{max}.

• we can still provide useful estimates by using $\zeta_N = \zeta_{max}$.

$$m_{\bar{\alpha}}^{2} \simeq \frac{n(\bar{\alpha}(n-2)n)^{-\frac{2}{n-1}}}{384\pi^{2}(n-1)A_{s}}$$

$$N_{e} \sim (\bar{\alpha}(n-2)n)^{\frac{1}{n-1}} \frac{48\pi^{2}(n-1)A_{s}}{n} \left[n + (1-n)_{2}F_{1}\left(1,\frac{1}{n-1};\frac{n}{n-1};\frac{1}{n}\right) \right] \rightarrow$$

 \rightarrow we can use it as a definition for $\bar{\alpha}$

$$r_{\bar{\alpha}} \simeq \frac{(n-2)(\bar{\alpha}(n-2)n)^{\frac{1}{1-n}}}{6\pi^2(n-1)A_s}$$

After some manipulations, the full Einstein frame EoMs read:

$$\ddot{\phi} + 3H\dot{\phi} + \frac{V'(\phi)}{F'(\zeta)k(\phi)} = \frac{\dot{\phi}\dot{\zeta}F''(\zeta)}{F'(\zeta)} - \frac{1}{2}\frac{k'(\phi)}{k(\phi)}\dot{\phi}^2$$
$$3H^2 = \frac{1}{2}\frac{\dot{\phi}^2}{F'(\zeta)}k(\phi) + U(\phi,\zeta)$$
$$-\frac{1}{2}\dot{\phi}^2F'(\zeta)k(\phi) + 2V(\phi) - 2G(\zeta) = 0$$

These can be used to also derive

$$\dot{H} = -\frac{1}{2} \frac{\dot{\phi}^2}{F'(\zeta)} k(\phi)$$

$$\epsilon_H \equiv -\frac{\dot{H}}{H^2} = \frac{12V(\phi) - 6F(\zeta) + 3\zeta F'(\zeta)}{6V(\phi) - 3F(\zeta) + 2\zeta F'(\zeta)}$$

$$\dot{\zeta} = \frac{3H\dot{\phi}^2 F'(\zeta)k(\phi) + 3V'(\phi)\dot{\phi}}{2G'(\zeta) + \frac{3}{2}\dot{\phi}^2 F''(\zeta)k(\phi)}$$

N.B. Even though ζ is only auxiliary, it has an implicit time dependence via ϕ

Antonio Racioppi ICHEP 2022, July 7th, 2022 Slow-roll inflation in Palatini F(R) gravity 14 / 16

- $\phi > 0 \rightarrow$ mirror with respect to x-axis H < 0 \rightarrow switch the direction of the flow. not reached smoothly when 1 ϕ
- $\phi > 0$: trajectory sharp turns into SR slow-roll
- $\phi < 0$: trajectory enters SR in $\dot{\phi} > 0$ branch

• illness of the *n* > 2 case