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THE STANDARD MODEL 

No Dark Matter 

No Inflation 

Predicted vacuum energy is huge! 

No reason for so much more matter  
than anti-matter 

Origin of its very special parameter values 

No gravity 

Why is the Higgs so light? 

Vacuum Stability

Of CosmologyOf Particle Physics
THE STANDARD MODEL 

What is Dark Matter? 

Flatness problem: Initial conditions for 
a present-day flat universe are < 

O(10-60) 

Inflation?  

Vacuum energy is tiny! 
 

CC, is it constant? 

Hubble constant disagreement 

6 free parameters, too much?

The Scalar 
Potential and 

Phase 
Transitions



The Higgs Potential
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• How did we get here?

• The masses of fermions

• Massive gauge bosons

• …

• Are we staying here?

• A case for BSM

• Early Universe insight

• …

Us?





The EPWT       BSM?



The Electroweak Phase transition (schematically)
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6) • The SM predicts a second order transition! 

• Bubbles of the new phase collide and turbulence in the 
plasma + sounds waves + … leads to GW spectrum 

• With a bit of luck, the peak might be at LISA’s reach 
• Early days in precision calculations … 

Dynamics of first-order phase transitions: outline
Bubble nucleation in detail

Hydrodynamics of bubble growth
Summary

(Hot) electroweak baryogenesis

Mechanism:(3)

I CP-violation in bubble wall field profile
I CP-asymmetry in reflection of fermions
I Chiral asymmetry ! (Sphalerons) ! baryon asymmetry
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(3)Cohen, Kaplan, Nelson 1991
Mark Hindmarsh Phase transitions
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• CP violation in bubble wall field profile 
• CP-asymmetry in reflection of fermions 
• Sphaleron processes that lead to baryogenesis 

• B violation 
• C and CP violation 
• Non-equilibrium 

Sakharov conditions

First-order EWPT +

SciPost Physics Lecture Notes Submission

Symmetric phase

Higgs phase Higgs phase Higgs phase

Figure 10: Due to thermal fluctuations, bubbles where the Higgs is in the stable ground state
occur that expand into regions where the Higgs is still in the metastable ground state. At
early times, the bubbles do not overlap, but later they combine until the entire fluid is in the
stable ground state.

Multiplying both sides of the above equation with ˆz„ and integrating over z, we obtain
⁄

dz
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After performing the integral on the left hand side of the equation we find

�VT ƒ “wvw

⁄
dz ÷T („, “w) (ˆz„)2

, (7.6)

where �VT = VT (z = +Œ) ≠ VT (z = ≠Œ) is the pressure di�erence across the wall. To
obtain the wall speed, one needs to solve this equation for vw. In practice, it is di�cult to
obtain a solution. In some cases a constant-vw solution may not even exist, in which case the
bubble wall must continue to accelerate. The case where vw æ 1 is called runaway solution;
the wall speed becomes ultra-relativistic [62,63].

However, provided the product “w÷T does not decrease with “w, a constant-vw solution
always exists. This seems to be the generic expectation for a phase transition in a gauge
theory like the Standard Model [63,64].

In the following discussion, we assume that the transition completes in much less than a
Hubble time, so that we can neglect the expansion of the universe.

In terms of vw the radius of a bubble at time t that nucleated at time t
Õ is given by

R = vw(t ≠ t
Õ). Consequently, the volume V of this bubble is

V(t, t
Õ) = 4fi

3 v
3
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Õ)3
. (7.7)

In particular, this allows us to determine the fractional volume of the universe in the broken
phase occupied by all bubbles. Ignoring overlaps and collisions between bubbles, the fractional
volume is given by the volume of a bubble nucleated at time t

Õ multiplied by the number
density of nucleated bubbles that nucleated during (tÕ

, t
Õ +dt

Õ), see Fig. 10. The latter is given
by dn(tÕ) = �(tÕ)dt

Õ
/V, such that the fractional volume in the metastable phase is

h(t) = 1 ≠
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If the EWPT was first order, it could be due to  
• Light new physics         
• Heavy new physics  -> SMEFT

BSM effects SM particles



The EWPT in (heavy) BSM

• The new operator allows us to have 
a barrier already at tree level if  

λ < 0 
• A little strange, but nothing in 

principle against it 
• The size of Wilson Coefficients 

dictates the size of the barrier and 
the order of the EWPT

• λ > 0 and tiny also works! Just 

as the SM’s case. 
• The barrier is generated 

radiatively 
• The WC plays a more indirect 

role  
(at least at LO) 

• Potentially the NP scale can be 
higher

• Large coefficients 
needed for FOPT


• They suggest a sub-TeV 
scale of NP


• Or the need to go 
beyond dim 6


• … unlikely 

• Smaller coefficients do 
the trick


• TeV-scale NP 

• Testable at future 

colliders

This + global fit : [arXiv:2103.14022   ECM, Enberg, Löfgren]     



The SM instability        
 
 
 

BSM?



The decay rate of the SM’s vacuum is enhanced during this 
period. At the same time, we are here, so there is a limit on how 
large that decay rate can be for whatever the theory of nature 
is.  

Inflation

and therefore the bound (5.9) can be written as

1 � Psurvival . e�3N . (5.24)

One can use the bounds (5.22) or (5.24) to constrain the Hubble rate during inflation

Hinf and other parameters of the theory. This computation can be done in two ways,

either using the instanton calculation of the tunneling rate discussed in Section 4, or using

the stochastic Starobinsky-Yokoyama approach discussed in Section 3.4. The instanton

calculation includes both quantum tunneling and classical excitation, and it can incorporate

interactions and gravitational backreaction at short distances. Because it requires analytic

continuation, it only works with constant Hubble rate Hinf , but it can still be expected

to be a good approximation when the Hubble rate is slowly varying. In contrast, the

stochastic approach can describe a time-dependent Hubble rate and gives a more detailed

picture of the time evolution, but it includes only the classical excitation process and does

not include interactions on sub-Hubble scales.

In the stochastic approach, the dynamics is described by either the Langevin equation

(3.14), or by the Fokker-Planck equation (3.16), which gives the time evolution of the

one-point probability distribution P (t,') of the Higgs field '.

If the Higgs field is assumed to vanish initially, ' = 0, the probability distribution

grows initially as

P (h, t) =

r
2⇡

H3t
exp

✓
�

2⇡2'2

H3t

◆
. (5.25)

This is obtained by ignoring the Higgs potential V ('), which should be a good approxi-

mation at early times.

After some time the potential becomes important and starts to limit this growth. If the

Hubble rate H is constant, the field approaches asymptotically the equilibrium distribution

(3.17), and it is also a good approximation if the Hubble rate is varying su�ciently slowly.

Considering the tree-level potential V (') = �'4/4 with constant � > 0, the typical (rms)

value of the field is given by Eq. (3.19) as

'⇤ ⇡ 0.363��1/4H ⇡ 0.605H, (5.26)

where the last expression is for the experimental value of the Higgs self coupling � ⇡ 0.13.

If H & 1010 GeV, these field values are beyond the position (2.32) of the maximum of the

potential. This means that for such values of the Hubble rate, inflationary fluctuations of

the Higgs field would be able to throw the Higgs field over the potential barrier, triggering

the vacuum instability [78, 129, 186, 189, 204, 205, 216, 218–224]. This would place a rough

upper bound on the Hubble rate,

H . 1010 GeV. (5.27)

To make the bound more precise, Espinosa et al. [186] solved the equation for the

initial state P (0,') = �('), with the boundary condition P ('bar, t) = 0 to account for
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The earliest stage in the evolution of the Universe that we have some evidence 
for is inflation, a period of accelerating expansion, which made the Universe 
spatially flat, homogeneous and isotropic and also generated the initial seeds for 
structure formation.  



The Stochastic formalism for Inflation
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@P (t,�)

@t
=

H3

4⇡2

✓
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@2

@�2
+ v0

@

@�
+ v00

◆
P (t,�), (2)

where we have introduced the re-scaled potential v(�) =
4⇡2

3H4 V (�).
This equation admits linearly independent solutions of

the form

Pn(t,�) = e�v(�)e�⇤nt n(�), (3)

where  n and ⇤n are eigenfunctions and eigenvalues,
respectively, of the di↵erential equation


�

1

2

@2

@�2
+ W (�)

�
 n =

4⇡2⇤n

H3
 n, (4)

with

W (�) =
1

2
(v0(�)2 � v00(�)). (5)

The eigenfunctions are chosen to be orthonormal,
Z

d� m(�) n(�) = �mn. (6)

It is straightforward to check that the function

 0(�) / e�v(�), (7)

satisfies Eq. (4) with ⇤0 = 0 and if it satisfies the appro-
priate boundary conditions, it is therefore an eigenfunc-
tion with zero eigenvalue.

The time evolution of the probability distribution can
therefore be expressed as

P (t;�) =  0(�)
X

n

an n(�) e�⇤n(t�t0) (8)

where the coe�cients an can be determined from the ini-
tial conditions as

an =

Z
d�
 n(�)

 0(�)
P (t0;�). (9)

It is useful to note that Eq. (4) has the form of the time-
independent Schrodinger equation with the Hamiltonian

H = �
1

2

@2

@�2
+ W (�), (10)

where role of the potential is played by the function
W (�). Furthermore, this Hamiltonian is supersymmet-
ric [21] in the sense that it can be written as H = A†A,
where

A =
1

p
2

✓
d

d�
+ v0(�)

◆
, A† =

1
p

2

✓
�

d

d�
+ v0(�)

◆
.

(11)

This Hamiltonian has a superpartner

H̃ = AA† = �
1

2

@2

@�2
+ W̃ (�), (12)

where

W̃ (�) =
1

2
(v0(�)2 + v00(�)), (13)

with the property that if  is an eigenfunction of H with
eigenvalue ⇤, then  ̃ = A satisfies

H̃ ̃ = AA†A = AH = ⇤A = ⇤ ̃, (14)

and is therefore an eigenfunction of H with the same
eigenvalue ⇤. The exception to this is the function  0

defined in Eq. (7), which satisfies A 0 = 0, and therefore
maps to zero under the supersymmetry transformation.

Therefore, as a consequence of supersymmetry, the
spectra of H and H̃ are identical, apart from possible
zero eigenvalues, and the eigenfunctions are related by
the mapping

 ̃n = A n,  n =
1

⇤n

A† ̃n. (15)

The form of H also implies that the eigenvalues ⇤n are
non-negative.

It is also worth noting that the W̃ defined in Eq. (13)
can be written as

W̃ (�) =
1

2
(ṽ0(�)2 � ṽ00(�)), (16)

with ṽ(�) = �v(�). Therefore the supersymmetry trans-
formation can be interpreted as flipping the sign of the
potential V (�).

III. VACUUM DECAY FOR BOUNDED
POTENTIALS

Let us now assume that the potential is bounded from
below, and grows su�ciently fast when � ! ±1, so that
the function

Peq(�) =  0(�)2 / e�2v(�) (17)

is normalisable. In that case, we can see from Eq. (8) that
it is a time-independent solution of the Fokker-Planck
equation (2) and therefore corresponds to the equilibrium
state of the system.

Let us also assume that the lowest non-zero eigenvalue
is much smaller than the others, ⇤1 ⌧ ⇤2. This is the
case when the potential V (�) has a local minimum sep-
arated from the global minimum by a su�ciently high
potential barrier. In classical field theory we would then
identify the local minimum as a false vacuum state, and
the global minimum as the true vacuum. Our aim now is
to find the corresponding interpretation in the stochastic
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The stochastic spectral expansion method o↵ers a simple framework for calculations in de Sitter
spacetimes. We show how to extend its reach to metastable vacuum states, both in the case when
the potential is bounded from below, and when it is unbounded from below and therefore no stable
vacuum state exists. In both cases, the decay rate of the metastable vacuum is given by the lowest
non-zero eigenvalue associated to the Fokker-Planck equation. We show how the corresponding
eigenfunction determines the field probability distribution which can be used to compute correlation
functions and other observables in the metastable vacuum state.

I. INTRODUCTION

Recently, there has been significant interest in under-
standing vacuum instability of scalar field theories in the
early Universe [1], largely motivated by the observation
that the electroweak vacuum state appears to be unsta-
ble in the Standard Model for the measured values of its
parameters [2, 3]. In order for the Universe to exist in
the electroweak vacuum today, its decay rate must have
been su�ciently low throughout the cosmological history
such that no vacuum decay events have taken place any-
where in our past lightcone. This requirement can place
significant constraint on cosmological scenarios [1] and,
for example, on the value of the non-minimal curvature
coupling of the Higgs field [4, 5].

For vacuum decay during inflation, one can simplify
calculations considerably by approximating the inflation-
ary metric with the de Sitter spacetime. In that case,
there are two main approaches for calculating the vac-
uum decay rate: the instanton method [6, 7], and the
stochastic Starobinsky-Yokoyama method [8, 9]. In this
paper, we will focus on the latter, and show how it can be
used to determine non-perturbatively both the vacuum
decay rate and also, to a certain extent, the properties of
the metastable state.

The stochastic formalism [9] provides a powerful frame-
work to deal with light scalar fields in de Sitter space.
It uses a stochastic Langevin equation to describe the
dynamics of the long-wavelength field modes, with a
noise term that arises from the short-wavelength quan-
tum modes. The method has been used by many authors
to calculate the rate of vacuum decay [10–16], using dif-
ferent prescriptions which give slightly di↵erent results.
Although they agree on the stochastic equations them-
selves, there has been no consensus on how the decay rate
should be defined in the context of the stochastic theory.

The spectral expansion method [9, 17–20] gives a pow-
erful technique for solving the stochastic system in terms
of a the eigenvalues and eigenfunctions of a Schrödinger-
like equation. In this paper we investigate vacuum decay

⇤ eliel.camargo-molina@physics.uu.se
† a.rajantie@imperial.ac.uk

using this approach. It is known that the vacuum de-
cay rate is given by the lowest non-zero eigenvalue [17],
which can be obtained to very high precision by solving
the eigenvalue equation. As we will show, this result ap-
plies both when the potential is bounded from below and
when it is unbounded, in which case no stable vacuum
state exists.

When considering cosmological scenarios in which the
observer itself is in the metastable vacuum state, as ap-
pears to be the case for the electroweak vacuum, it is also
important to be able to compute observables such as cor-
relation functions in that state. This requires knowledge
of the field probability distribution in the false vacuum
state. We show that for potentials that are unbounded
from below, this can be obtained unambiguously from
the eigenfunctions of the eigenvalue equation associated
to the Fokker-Planck equation. We also find a function
that can be given the same interpretation when the po-
tential is bounded from below.

II. THE STOCHASTIC FORMALISM

Consider a scalar field � in de Sitter space with poten-
tial V (�) such that the field is light (V 00(�) < H2) and its
contribution to the total energy is small (V < 3H2M2

P
).

Under those assumptions, the stochastic approach starts
by treating the field as mainly long-wave modes (which
can be thought as � averaged over a constant volume
slightly larger than a Hubble volume) and short-wave
quantum modes ⇠ that are modelled as a white noise
term with the appropriate correlation properties. With
this treatment, it is possible to write a Langevin equa-
tion satisfied by the long-wave modes [9] (which we call
� from now on),

d

dt
� = �

1

3H
V 0(�) + ⇠(t) (1)

with h⇠(t1)⇠(t2)i =
H3

4⇡2
�(t1 � t2).

From this, it can be derived [9] that the probability distri-
bution for �, P (t, �), satisfies the Fokker-Planck equation
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P (t,�), (2)

where we have introduced the re-scaled potential v(�) =
4⇡2

3H4 V (�).
This equation admits linearly independent solutions of

the form

Pn(t,�) = e�v(�)e�⇤nt n(�), (3)

where  n and ⇤n are eigenfunctions and eigenvalues,
respectively, of the di↵erential equation


�
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@�2
+ W (�)

�
 n =

4⇡2⇤n

H3
 n, (4)

with

W (�) =
1

2
(v0(�)2 � v00(�)). (5)

The eigenfunctions are chosen to be orthonormal,
Z

d� m(�) n(�) = �mn. (6)

It is straightforward to check that the function

 0(�) / e�v(�), (7)

satisfies Eq. (4) with ⇤0 = 0 and if it satisfies the appro-
priate boundary conditions, it is therefore an eigenfunc-
tion with zero eigenvalue.

The time evolution of the probability distribution can
therefore be expressed as

P (t;�) =  0(�)
X

n

an n(�) e�⇤n(t�t0) (8)

where the coe�cients an can be determined from the ini-
tial conditions as

an =

Z
d�
 n(�)

 0(�)
P (t0;�). (9)

It is useful to note that Eq. (4) has the form of the time-
independent Schrodinger equation with the Hamiltonian

H = �
1

2

@2

@�2
+ W (�), (10)

where role of the potential is played by the function
W (�). Furthermore, this Hamiltonian is supersymmet-
ric [21] in the sense that it can be written as H = A†A,
where

A =
1

p
2
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+ v0(�)

◆
, A† =

1
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+ v0(�)

◆
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(11)

This Hamiltonian has a superpartner

H̃ = AA† = �
1

2

@2

@�2
+ W̃ (�), (12)

where

W̃ (�) =
1

2
(v0(�)2 + v00(�)), (13)

with the property that if  is an eigenfunction of H with
eigenvalue ⇤, then  ̃ = A satisfies

H̃ ̃ = AA†A = AH = ⇤A = ⇤ ̃, (14)

and is therefore an eigenfunction of H with the same
eigenvalue ⇤. The exception to this is the function  0

defined in Eq. (7), which satisfies A 0 = 0, and therefore
maps to zero under the supersymmetry transformation.

Therefore, as a consequence of supersymmetry, the
spectra of H and H̃ are identical, apart from possible
zero eigenvalues, and the eigenfunctions are related by
the mapping

 ̃n = A n,  n =
1

⇤n

A† ̃n. (15)

The form of H also implies that the eigenvalues ⇤n are
non-negative.

It is also worth noting that the W̃ defined in Eq. (13)
can be written as

W̃ (�) =
1

2
(ṽ0(�)2 � ṽ00(�)), (16)

with ṽ(�) = �v(�). Therefore the supersymmetry trans-
formation can be interpreted as flipping the sign of the
potential V (�).

III. VACUUM DECAY FOR BOUNDED
POTENTIALS

Let us now assume that the potential is bounded from
below, and grows su�ciently fast when � ! ±1, so that
the function

Peq(�) =  0(�)2 / e�2v(�) (17)

is normalisable. In that case, we can see from Eq. (8) that
it is a time-independent solution of the Fokker-Planck
equation (2) and therefore corresponds to the equilibrium
state of the system.

Let us also assume that the lowest non-zero eigenvalue
is much smaller than the others, ⇤1 ⌧ ⇤2. This is the
case when the potential V (�) has a local minimum sep-
arated from the global minimum by a su�ciently high
potential barrier. In classical field theory we would then
identify the local minimum as a false vacuum state, and
the global minimum as the true vacuum. Our aim now is
to find the corresponding interpretation in the stochastic

2

@P (t,�)

@t
=

H3

4⇡2

✓
1

2

@2

@�2
+ v0

@

@�
+ v00

◆
P (t,�), (2)

where we have introduced the re-scaled potential v(�) =
4⇡2

3H4 V (�).
This equation admits linearly independent solutions of

the form

Pn(t,�) = e�v(�)e�⇤nt n(�), (3)

where  n and ⇤n are eigenfunctions and eigenvalues,
respectively, of the di↵erential equation


�

1

2

@2

@�2
+ W (�)

�
 n =

4⇡2⇤n

H3
 n, (4)

with

W (�) =
1

2
(v0(�)2 � v00(�)). (5)

The eigenfunctions are chosen to be orthonormal,
Z

d� m(�) n(�) = �mn. (6)

It is straightforward to check that the function

 0(�) / e�v(�), (7)

satisfies Eq. (4) with ⇤0 = 0 and if it satisfies the appro-
priate boundary conditions, it is therefore an eigenfunc-
tion with zero eigenvalue.

The time evolution of the probability distribution can
therefore be expressed as

P (t;�) =  0(�)
X

n

an n(�) e�⇤n(t�t0) (8)

where the coe�cients an can be determined from the ini-
tial conditions as

an =

Z
d�
 n(�)

 0(�)
P (t0;�). (9)

It is useful to note that Eq. (4) has the form of the time-
independent Schrodinger equation with the Hamiltonian

H = �
1

2

@2

@�2
+ W (�), (10)

where role of the potential is played by the function
W (�). Furthermore, this Hamiltonian is supersymmet-
ric [21] in the sense that it can be written as H = A†A,
where

A =
1

p
2

✓
d

d�
+ v0(�)

◆
, A† =

1
p

2

✓
�

d

d�
+ v0(�)

◆
.

(11)

This Hamiltonian has a superpartner

H̃ = AA† = �
1

2

@2

@�2
+ W̃ (�), (12)

where

W̃ (�) =
1

2
(v0(�)2 + v00(�)), (13)

with the property that if  is an eigenfunction of H with
eigenvalue ⇤, then  ̃ = A satisfies

H̃ ̃ = AA†A = AH = ⇤A = ⇤ ̃, (14)

and is therefore an eigenfunction of H with the same
eigenvalue ⇤. The exception to this is the function  0

defined in Eq. (7), which satisfies A 0 = 0, and therefore
maps to zero under the supersymmetry transformation.

Therefore, as a consequence of supersymmetry, the
spectra of H and H̃ are identical, apart from possible
zero eigenvalues, and the eigenfunctions are related by
the mapping

 ̃n = A n,  n =
1

⇤n

A† ̃n. (15)

The form of H also implies that the eigenvalues ⇤n are
non-negative.

It is also worth noting that the W̃ defined in Eq. (13)
can be written as

W̃ (�) =
1

2
(ṽ0(�)2 � ṽ00(�)), (16)

with ṽ(�) = �v(�). Therefore the supersymmetry trans-
formation can be interpreted as flipping the sign of the
potential V (�).

III. VACUUM DECAY FOR BOUNDED
POTENTIALS

Let us now assume that the potential is bounded from
below, and grows su�ciently fast when � ! ±1, so that
the function

Peq(�) =  0(�)2 / e�2v(�) (17)

is normalisable. In that case, we can see from Eq. (8) that
it is a time-independent solution of the Fokker-Planck
equation (2) and therefore corresponds to the equilibrium
state of the system.

Let us also assume that the lowest non-zero eigenvalue
is much smaller than the others, ⇤1 ⌧ ⇤2. This is the
case when the potential V (�) has a local minimum sep-
arated from the global minimum by a su�ciently high
potential barrier. In classical field theory we would then
identify the local minimum as a false vacuum state, and
the global minimum as the true vacuum. Our aim now is
to find the corresponding interpretation in the stochastic

QFT calculations in curved spacetimes are hard! 
Calculations can be done by separating scalar fields in long- and short-wave (quantum) Modes, 

And writing everything in terms of probability distributions for the scalar fields (used to calculate exp. values)
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theory, in which states correspond to probability distri-
butions rather than single field values.

Assuming this hierarchy of eigenvalues, the probability
distribution at asymptotically late times is given by

P (t;�) = Peq(�)+c0 0(�) 1(�)e�⇤1t+O
�
e�⇤2t

�
, (18)

where again c0 is a constant that can be determined from
initial conditions.

Alternative to the paragraph above: To interpret this,
assume that in the false vacuum state the field has a
probability distribution P1(�), which we would like to
determine. If the system is initially (at time t0) in this
metastable state, we expect it to have a decreasing prob-
ability p1(t) = exp(��(t � t0)) of being still in the false
vacuum state P1(�). Here � is the false vacuum decay
rate. Correspondingly, the system has probability (1�p1)
of being in the true vacuum state Peq(�).

The field probability distribution in such a mixed state
is

P (t;�) = (1 � p1(t))Peq(�) + p1(t)P1(�) (19)

= Peq(�) + p1(t)(P1(�) � Peq(�)).

Comparing this with Eq. (18), we can see that this in-
terpretation requires that � = ⇤1, i.e., the false vacuum
decay rate is given by the lowest non-zero eigenvalue.

Furthermore, this identification suggests that we
should be able to find the false vacuum probability dis-
tribution P1(�) by assuming the mixed state (18), and
following it back to the time t0 when the system was
fully in the false vacuum state. This gives

P1(�) = P (t0;�) = Peq(�) + c̄0 0(�) 1(�), (20)

where c̄0 = c0 exp(�⇤1t0). This is a correctly normalised
probability distribution because the eigenvalues are or-
thogonal,

Z
d�P1(�) =

Z
d�Peq(�) + c̄0

Z
d� 0(�) 1(�)

=

Z
d�Peq(�) = 1. (21)

However, it depends on the value that is chosen for the
coe�cient c̄0 or, equivalently, how far back in time one
follows the evolution. In order for P1 to be a well-defined
probability distribution, it needs to be non-negative, and
this means that the coe�cient c̄0 has to be in the range

�
1

max  1

 0

 c̄0  �
1

min  1

 0

. (22)

Note that  0 can be chosen to be positive, and  1 has
one zero. Therefore max  1

 0
> 0 min  1

 0
< 0.

This suggests that the two possible optimal choices for
c̄0 are the two extremes of the range (22). In practice,
the ratio  1/ 0 is often a monotonic function and can
be chosen to be an increasing function, in which case
these two choices correspond to the limits of � ! 1 and

� ! �1, respectively. If the false minimum is, say, to
the right of the true minimum, the appropriate choice
for P1 is the one in which the probability distribution is
localised towards the positive values of �, which means
that c̄0 > 0, and hence

c̄0 = �
1

max  1

 0

= � lim
�!1

 0(�)

 1(�)
. (23)

In summary, when the potential is bounded from be-
low, the decay rate of the false vacuum state is given
by the lowest non-zero eigenvalue, � = ⇤1, and the field
probability distribution in this false vacuum state can be
written as

P1(�) =  0(�)


 0(�) �

✓
lim
�0!1

 0(�0)

 1(�0)

◆
 1(�)

�
. (24)

IV. VACUUM DECAY FOR UNBOUNDED
POTENTIALS

Interestingly, the stochastic formalism can be also ap-
plied to potentials that are unbounded from below. Such
potentials are interesting for many reasons; the Standard
Model potential at very high energies can be described
by a negative quartic potential, and more generally, e↵ec-
tive field theories with unknown high-energy origin can
be described with unbounded potentials without neces-
sarily jeopardizing their physical applicability.

Let us assume that we have a potential V (�) that is
finite everywhere but is not bounded from below, so that
it approaches �1 as either � ! 1 or � ! �1, or both.
In that case the function  0(�) defined by Eq. (7) still
satisfies the eigenvalue equation (4) with ⇤0 = 0, but it
does not satisfy the correct boundary conditions and it
is therefore not a valid eigenfunction. Correspondingly,
Peq(�) defined by Eq. (17) is not normalisable, and there-
fore does not give an equilibrium probability distribution.

Instead, the lowest eigenvalue, which we denote by ⇤1

is positive, and the corresponding eigenfunction  1(�)
allows us to define the probability distribution

P1(�) =
1

N
 0(�) 1(�), (25)

where the normalisation constant is

N =

Z
d� 0(�) 1(�). (26)

Note that because  0 is not an eigenfunction, it is not
orthogonal to  1, and therefore N 6= 0. Because  1 is
the lowest eigenfunction, it has no zeros, and therefore
P1(�) is a non-negative function.

Of course, P1(�) is not an equilibrium probability dis-
tribution as such. If the field has initially, at time t0,
the probability distribution P1(�), then it follows from
Eqs. (8) and (9) that at a later time t, it has probability
distribution

P (t;�) = e�⇤1(t�t0)P1(�). (27)

As long as the potential is bounded from below!

Which leads to a jump from quantum to classical by studying field averages over Hubble volumes
QUANTUMLONG-WAVE

White noise!
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FIG. 4. Comparison between  +
0 ,  +

1 (left) and Peq, P+
1

(right) for two sets of parameter values. The corresponding
potentials are shown for illustration.

FIG. 5. Comparison between  �
0 ,  �

1 (left) and P�
eq, P�

1

(right) for a non-symmetric (top) and symmetric (bottom)
potentials. The corresponding potentials are shown for illus-
tration.

VI. DISCUSSION

In this article, we have shown how the Starobinsky-
Yokoyama stochastic approach can be used to describe
vacuum decay in scalar field theories in de Sitter space,
both in the case of potentials that are bounded and un-
bounded from below. In both cases, the decay rate per
unit time of the metastable vacuum is given by the lowest
non-zero eigenvalue of the eigenvalue equation associated
to the Fokker-Planck equation, which is a known result
from stochastic analysis [17].

We also showed that the corresponding eigenfunction
determines the observables in the metastable vacuum
state. In the case of an unbounded potential, the re-

FIG. 6. The numerical probability density for large field val-
ues compared to Eq. (37). On the left, for smaller field values,
we show a linear scale while on the right we switch to loga-
rithmic for larger field values. Both expressions agree very
well from �̂ ⇠ 4 and continue to do so across several orders of
magnitude.

lation is straightforward and unambiguous. In bounded
potentials, a probability distribution cannot be uniquely
associated with the metastable vacuum state, but by fol-
lowing the time evolution backwards as far as possible, we
determined a function that can be given that interpreta-
tion. These probability distributions are useful for com-
puting predictions for observables that would be mea-
sured by an observer in the metastable vacuum.

The formalism and methods presented in this article,
facilitate phenomenological studies of phase transitions
and vacuum decay during inflation. In the case of the
Standard Model, which famously exhibits an unbounded
potential at higher energies [2], the prediction of a single
vacuum decay event in the past light cone would rule out
the theory, and hence require some new physics Beyond
the Standard Model, phase transitions during inflation
imply a primordial gravitational wave signature that will
be probed at future experiments [22]. This paper sets
the ground for such precision calculations.

In this article we focused on vacuum decay purely
within the stochastic approach. While this helps set a
clear interpretation of vacuum decay in the stochastic
formalism, a precision calculation needs to nevertheless
put our results in the context of quantum field theory. As
shown in Ref. [23], it is then possible to e.g. incorporate
quantum corrections at the one-loop order.
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This shows concretely that probability is not conserved
in the case of an unbounded potential. This is because
there is a non-zero probability per unit time � = ⇤1 > 0
that the field rolls down the potential and reaches infinity.
Therefore, just like in the case of the bounded potential,
⇤1 gives the vacuum decay rate.

If we consider an observer whose existence requires the
field � to have a finite value, and which gets destroyed
if the field ever reaches infinity, then the observer will
only ever observe the conditional probability distribution
which assumes that the field is finite. At any time t, this
is given by

P
⇣
t;�

���|�| < 1

⌘
=

P (t;�)R1
�1 d�0P (t;�0)

= P1(�). (28)

Therefore, the observer actually observes the field in an
time-independent probability distribution P1(�).

For this construction to work, the normalisation con-
stant N defined in Eq. (26) must be finite. This is not
obvious because  0(�) diverges at infinity. We can use
the supersymmetry transformation to investigate this. If
we assume that lim�!±1 v(�) = �1, the superpartner
ṽ(�) = �v(�) is bounded from below. Its lowest eigen-
function, with zero eigenvalue, is

 ̃0(�) / e�ṽ(�) = ev(�). (29)

We can also use the perturbative techniques from Ref. [9]
to find the asymptotic behaviour of the next eigenfunc-
tion  ̃1(�) at large field values,

 ̃1(�) /  ̃0(�)

�2✏1 ̃0(�)

Z 1

�

d�0
Z

�
0

�

d�00 e2ṽ(�
00)�2ṽ(�0),(30)

where ✏1 = 4⇡2⇤1/H3 is the perturbative expansion pa-
rameter. Applying the inverse supersymmetry transfor-
mation (15), we find the perturbative expression for the
lowest eigenstate in the original unstable theory,

 1(�) =
1

⇤1
A† ̃1(�) / e�v(�)

Z 1

�

d�0e2v(�
0). (31)

Note that, in fact, this is the same as �(1)
st defined in

Eq. (52) of [9].
If we assume that v(�) ⇠ �g�↵, ↵ > 0, as � ! 1,

then

 1(�) ⇠ �

✓
1

↵
,�↵

◆
⇠ �1�↵e�g�

↵

, (32)

where �(s, x) is the incomplete gamma function. The
probability distribution P1(�) then behaves asymptoti-
cally as

P1(�) ⇠ �1�↵, (33)

and is normalisable if ↵ > 2. Therefore the construc-
tion works for unstable potentials that are steeper than
harmonic.

As a consistency check, we can also see that the time-
dependent probability distribution P (t;�) satisfies the
continuity equation

@P

@t
=

@

@�
J, (34)

where

J(�) =
H3

4⇡2

✓
1

2

@P

@�
+ v0P

◆
. (35)

Integrating over �, Eq. (27) implies

� ⇤1 = lim
�!1

(J(�) � J(��)) = lim
�!1

H3

2⇡2
v0(�)P1(�),

(36)
where we have assumed a symmetric potential, v(��) =
v(�), for simplicity. From this we can see that we must
have

P1(�) ⇠
2⇡2⇤1

H3

1

|v0(�)|
, (37)

which is consistent with Eq. (33). In the case of non-
symmetric potentials, while Eq. (37) would have a di↵er-
ent constant prefactor, it would still be proportional to
1/|v0(�)|.

In summary, for an unbounded potential, the vacuum
decay rate is give by � = ⇤1, just like for bounded po-
tentials, and the false vacuum “equilibrium” probability
distribution is given by Eq. (25).

V. NUMERICAL RESULTS

In this section we take our discussion above and ap-
ply it to a concrete case. We start by considering the
bounded scalar potential

V +(�) =
3H4

4⇡2
v+ = µ3��

1

2
m̄2�2 + ��4, (38)

where � > 0, and the unbounded potential V �(�) =
�V +(�), which is also the superpartner of V +. In
the following we will use superscripts + and � to in-
dicate whether the quantity relates to the bounded or
unbounded from below cases respectively.

As help for numerical calculations, we will cast the
re-scaled potential v+ as a function of dimensionless pa-
rameters ↵̄ = m̄2/�

1
2 H2, � = µ3/�

1
4 H3 and the dimen-

sionless scalar field �̂ = �
1
4 ⌦
H

� where ⌦ = 1 +
p
↵̄ + �.

This results in the dimensionless potential

3⌦

⇡2
v+ = 4��̂+ 2↵̄�̂2 + �̂4. (39)

We show v+ and v� = �v in Fig. 1 (for ↵̄ = 0.8 and
� = 0.1) to illustrate that one is a bounded potential
with true and false vacua and the other an unbounded
potential with a minimum around the origin.
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theory, in which states correspond to probability distri-
butions rather than single field values.

Assuming this hierarchy of eigenvalues, the probability
distribution at asymptotically late times is given by

P (t;�) = Peq(�)+c0 0(�) 1(�)e�⇤1t+O
�
e�⇤2t

�
, (18)

where again c0 is a constant that can be determined from
initial conditions.

Alternative to the paragraph above: To interpret this,
assume that in the false vacuum state the field has a
probability distribution P1(�), which we would like to
determine. If the system is initially (at time t0) in this
metastable state, we expect it to have a decreasing prob-
ability p1(t) = exp(��(t � t0)) of being still in the false
vacuum state P1(�). Here � is the false vacuum decay
rate. Correspondingly, the system has probability (1�p1)
of being in the true vacuum state Peq(�).

The field probability distribution in such a mixed state
is

P (t;�) = (1 � p1(t))Peq(�) + p1(t)P1(�) (19)

= Peq(�) + p1(t)(P1(�) � Peq(�)).

Comparing this with Eq. (18), we can see that this in-
terpretation requires that � = ⇤1, i.e., the false vacuum
decay rate is given by the lowest non-zero eigenvalue.

Furthermore, this identification suggests that we
should be able to find the false vacuum probability dis-
tribution P1(�) by assuming the mixed state (18), and
following it back to the time t0 when the system was
fully in the false vacuum state. This gives

P1(�) = P (t0;�) = Peq(�) + c̄0 0(�) 1(�), (20)

where c̄0 = c0 exp(�⇤1t0). This is a correctly normalised
probability distribution because the eigenvalues are or-
thogonal,

Z
d�P1(�) =

Z
d�Peq(�) + c̄0

Z
d� 0(�) 1(�)

=

Z
d�Peq(�) = 1. (21)

However, it depends on the value that is chosen for the
coe�cient c̄0 or, equivalently, how far back in time one
follows the evolution. In order for P1 to be a well-defined
probability distribution, it needs to be non-negative, and
this means that the coe�cient c̄0 has to be in the range

�
1

max  1

 0

 c̄0  �
1

min  1

 0

. (22)

Note that  0 can be chosen to be positive, and  1 has
one zero. Therefore max  1

 0
> 0 min  1

 0
< 0.

This suggests that the two possible optimal choices for
c̄0 are the two extremes of the range (22). In practice,
the ratio  1/ 0 is often a monotonic function and can
be chosen to be an increasing function, in which case
these two choices correspond to the limits of � ! 1 and

� ! �1, respectively. If the false minimum is, say, to
the right of the true minimum, the appropriate choice
for P1 is the one in which the probability distribution is
localised towards the positive values of �, which means
that c̄0 > 0, and hence

c̄0 = �
1

max  1

 0

= � lim
�!1

 0(�)

 1(�)
. (23)

In summary, when the potential is bounded from be-
low, the decay rate of the false vacuum state is given
by the lowest non-zero eigenvalue, � = ⇤1, and the field
probability distribution in this false vacuum state can be
written as

P1(�) =  0(�)


 0(�) �

✓
lim
�0!1

 0(�0)

 1(�0)

◆
 1(�)

�
. (24)

IV. VACUUM DECAY FOR UNBOUNDED
POTENTIALS

Interestingly, the stochastic formalism can be also ap-
plied to potentials that are unbounded from below. Such
potentials are interesting for many reasons; the Standard
Model potential at very high energies can be described
by a negative quartic potential, and more generally, e↵ec-
tive field theories with unknown high-energy origin can
be described with unbounded potentials without neces-
sarily jeopardizing their physical applicability.

Let us assume that we have a potential V (�) that is
finite everywhere but is not bounded from below, so that
it approaches �1 as either � ! 1 or � ! �1, or both.
In that case the function  0(�) defined by Eq. (7) still
satisfies the eigenvalue equation (4) with ⇤0 = 0, but it
does not satisfy the correct boundary conditions and it
is therefore not a valid eigenfunction. Correspondingly,
Peq(�) defined by Eq. (17) is not normalisable, and there-
fore does not give an equilibrium probability distribution.

Instead, the lowest eigenvalue, which we denote by ⇤1

is positive, and the corresponding eigenfunction  1(�)
allows us to define the probability distribution

P1(�) =
1

N
 0(�) 1(�), (25)

where the normalisation constant is

N =

Z
d� 0(�) 1(�). (26)

Note that because  0 is not an eigenfunction, it is not
orthogonal to  1, and therefore N 6= 0. Because  1 is
the lowest eigenfunction, it has no zeros, and therefore
P1(�) is a non-negative function.

Of course, P1(�) is not an equilibrium probability dis-
tribution as such. If the field has initially, at time t0,
the probability distribution P1(�), then it follows from
Eqs. (8) and (9) that at a later time t, it has probability
distribution

P (t;�) = e�⇤1(t�t0)P1(�). (27)
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This shows concretely that probability is not conserved
in the case of an unbounded potential. This is because
there is a non-zero probability per unit time � = ⇤1 > 0
that the field rolls down the potential and reaches infinity.
Therefore, just like in the case of the bounded potential,
⇤1 gives the vacuum decay rate.

If we consider an observer whose existence requires the
field � to have a finite value, and which gets destroyed
if the field ever reaches infinity, then the observer will
only ever observe the conditional probability distribution
which assumes that the field is finite. At any time t, this
is given by

P
⇣
t;�

���|�| < 1

⌘
=

P (t;�)R1
�1 d�0P (t;�0)

= P1(�). (28)

Therefore, the observer actually observes the field in an
time-independent probability distribution P1(�).

For this construction to work, the normalisation con-
stant N defined in Eq. (26) must be finite. This is not
obvious because  0(�) diverges at infinity. We can use
the supersymmetry transformation to investigate this. If
we assume that lim�!±1 v(�) = �1, the superpartner
ṽ(�) = �v(�) is bounded from below. Its lowest eigen-
function, with zero eigenvalue, is

 ̃0(�) / e�ṽ(�) = ev(�). (29)

We can also use the perturbative techniques from Ref. [9]
to find the asymptotic behaviour of the next eigenfunc-
tion  ̃1(�) at large field values,

 ̃1(�) /  ̃0(�)

�2✏1 ̃0(�)

Z 1

�

d�0
Z

�
0

�

d�00 e2ṽ(�
00)�2ṽ(�0),(30)

where ✏1 = 4⇡2⇤1/H3 is the perturbative expansion pa-
rameter. Applying the inverse supersymmetry transfor-
mation (15), we find the perturbative expression for the
lowest eigenstate in the original unstable theory,

 1(�) =
1

⇤1
A† ̃1(�) / e�v(�)

Z 1

�

d�0e2v(�
0). (31)

Note that, in fact, this is the same as �(1)
st defined in

Eq. (52) of [9].
If we assume that v(�) ⇠ �g�↵, ↵ > 0, as � ! 1,

then

 1(�) ⇠ �

✓
1

↵
,�↵

◆
⇠ �1�↵e�g�

↵

, (32)

where �(s, x) is the incomplete gamma function. The
probability distribution P1(�) then behaves asymptoti-
cally as

P1(�) ⇠ �1�↵, (33)

and is normalisable if ↵ > 2. Therefore the construc-
tion works for unstable potentials that are steeper than
harmonic.

As a consistency check, we can also see that the time-
dependent probability distribution P (t;�) satisfies the
continuity equation

@P

@t
=

@

@�
J, (34)

where

J(�) =
H3

4⇡2

✓
1

2

@P

@�
+ v0P

◆
. (35)

Integrating over �, Eq. (27) implies

� ⇤1 = lim
�!1

(J(�) � J(��)) = lim
�!1

H3

2⇡2
v0(�)P1(�),

(36)
where we have assumed a symmetric potential, v(��) =
v(�), for simplicity. From this we can see that we must
have

P1(�) ⇠
2⇡2⇤1

H3

1

|v0(�)|
, (37)

which is consistent with Eq. (33). In the case of non-
symmetric potentials, while Eq. (37) would have a di↵er-
ent constant prefactor, it would still be proportional to
1/|v0(�)|.

In summary, for an unbounded potential, the vacuum
decay rate is give by � = ⇤1, just like for bounded po-
tentials, and the false vacuum “equilibrium” probability
distribution is given by Eq. (25).

V. NUMERICAL RESULTS

In this section we take our discussion above and ap-
ply it to a concrete case. We start by considering the
bounded scalar potential

V +(�) =
3H4

4⇡2
v+ = µ3��

1

2
m̄2�2 + ��4, (38)

where � > 0, and the unbounded potential V �(�) =
�V +(�), which is also the superpartner of V +. In
the following we will use superscripts + and � to in-
dicate whether the quantity relates to the bounded or
unbounded from below cases respectively.

As help for numerical calculations, we will cast the
re-scaled potential v+ as a function of dimensionless pa-
rameters ↵̄ = m̄2/�

1
2 H2, � = µ3/�

1
4 H3 and the dimen-

sionless scalar field �̂ = �
1
4 ⌦
H

� where ⌦ = 1 +
p
↵̄ + �.

This results in the dimensionless potential

3⌦

⇡2
v+ = 4��̂+ 2↵̄�̂2 + �̂4. (39)

We show v+ and v� = �v in Fig. 1 (for ↵̄ = 0.8 and
� = 0.1) to illustrate that one is a bounded potential
with true and false vacua and the other an unbounded
potential with a minimum around the origin.

If the potential is bounded from below, and there is an 
excited (unstable) state with PDF P1 then

Which compared to 

3

theory, in which states correspond to probability distri-
butions rather than single field values.

Assuming this hierarchy of eigenvalues, the probability
distribution at asymptotically late times is given by

P (t;�) = Peq(�)+c0 0(�) 1(�)e�⇤1t+O
�
e�⇤2t

�
, (18)

where again c0 is a constant that can be determined from
initial conditions.

Alternative to the paragraph above: To interpret this,
assume that in the false vacuum state the field has a
probability distribution P1(�), which we would like to
determine. If the system is initially (at time t0) in this
metastable state, we expect it to have a decreasing prob-
ability p1(t) = exp(��(t � t0)) of being still in the false
vacuum state P1(�). Here � is the false vacuum decay
rate. Correspondingly, the system has probability (1�p1)
of being in the true vacuum state Peq(�).

The field probability distribution in such a mixed state
is

P (t;�) = (1 � p1(t))Peq(�) + p1(t)P1(�) (19)

= Peq(�) + p1(t)(P1(�) � Peq(�)).

Comparing this with Eq. (18), we can see that this in-
terpretation requires that � = ⇤1, i.e., the false vacuum
decay rate is given by the lowest non-zero eigenvalue.

Furthermore, this identification suggests that we
should be able to find the false vacuum probability dis-
tribution P1(�) by assuming the mixed state (18), and
following it back to the time t0 when the system was
fully in the false vacuum state. This gives

P1(�) = P (t0;�) = Peq(�) + c̄0 0(�) 1(�), (20)

where c̄0 = c0 exp(�⇤1t0). This is a correctly normalised
probability distribution because the eigenvalues are or-
thogonal,

Z
d�P1(�) =

Z
d�Peq(�) + c̄0

Z
d� 0(�) 1(�)

=

Z
d�Peq(�) = 1. (21)

However, it depends on the value that is chosen for the
coe�cient c̄0 or, equivalently, how far back in time one
follows the evolution. In order for P1 to be a well-defined
probability distribution, it needs to be non-negative, and
this means that the coe�cient c̄0 has to be in the range

�
1

max  1

 0

 c̄0  �
1

min  1

 0

. (22)

Note that  0 can be chosen to be positive, and  1 has
one zero. Therefore max  1

 0
> 0 min  1

 0
< 0.

This suggests that the two possible optimal choices for
c̄0 are the two extremes of the range (22). In practice,
the ratio  1/ 0 is often a monotonic function and can
be chosen to be an increasing function, in which case
these two choices correspond to the limits of � ! 1 and

� ! �1, respectively. If the false minimum is, say, to
the right of the true minimum, the appropriate choice
for P1 is the one in which the probability distribution is
localised towards the positive values of �, which means
that c̄0 > 0, and hence

c̄0 = �
1

max  1

 0

= � lim
�!1

 0(�)

 1(�)
. (23)

In summary, when the potential is bounded from be-
low, the decay rate of the false vacuum state is given
by the lowest non-zero eigenvalue, � = ⇤1, and the field
probability distribution in this false vacuum state can be
written as

P1(�) =  0(�)


 0(�) �

✓
lim
�0!1

 0(�0)

 1(�0)

◆
 1(�)

�
. (24)

IV. VACUUM DECAY FOR UNBOUNDED
POTENTIALS

Interestingly, the stochastic formalism can be also ap-
plied to potentials that are unbounded from below. Such
potentials are interesting for many reasons; the Standard
Model potential at very high energies can be described
by a negative quartic potential, and more generally, e↵ec-
tive field theories with unknown high-energy origin can
be described with unbounded potentials without neces-
sarily jeopardizing their physical applicability.

Let us assume that we have a potential V (�) that is
finite everywhere but is not bounded from below, so that
it approaches �1 as either � ! 1 or � ! �1, or both.
In that case the function  0(�) defined by Eq. (7) still
satisfies the eigenvalue equation (4) with ⇤0 = 0, but it
does not satisfy the correct boundary conditions and it
is therefore not a valid eigenfunction. Correspondingly,
Peq(�) defined by Eq. (17) is not normalisable, and there-
fore does not give an equilibrium probability distribution.

Instead, the lowest eigenvalue, which we denote by ⇤1

is positive, and the corresponding eigenfunction  1(�)
allows us to define the probability distribution

P1(�) =
1

N
 0(�) 1(�), (25)

where the normalisation constant is

N =

Z
d� 0(�) 1(�). (26)

Note that because  0 is not an eigenfunction, it is not
orthogonal to  1, and therefore N 6= 0. Because  1 is
the lowest eigenfunction, it has no zeros, and therefore
P1(�) is a non-negative function.

Of course, P1(�) is not an equilibrium probability dis-
tribution as such. If the field has initially, at time t0,
the probability distribution P1(�), then it follows from
Eqs. (8) and (9) that at a later time t, it has probability
distribution

P (t;�) = e�⇤1(t�t0)P1(�). (27)

Makes it easier to see that
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theory, in which states correspond to probability distri-
butions rather than single field values.

Assuming this hierarchy of eigenvalues, the probability
distribution at asymptotically late times is given by

P (t;�) = Peq(�)+c0 0(�) 1(�)e�⇤1t+O
�
e�⇤2t

�
, (18)

where again c0 is a constant that can be determined from
initial conditions.

Alternative to the paragraph above: To interpret this,
assume that in the false vacuum state the field has a
probability distribution P1(�), which we would like to
determine. If the system is initially (at time t0) in this
metastable state, we expect it to have a decreasing prob-
ability p1(t) = exp(��(t � t0)) of being still in the false
vacuum state P1(�). Here � is the false vacuum decay
rate. Correspondingly, the system has probability (1�p1)
of being in the true vacuum state Peq(�).

The field probability distribution in such a mixed state
is

P (t;�) = (1 � p1(t))Peq(�) + p1(t)P1(�) (19)

= Peq(�) + p1(t)(P1(�) � Peq(�)).

Comparing this with Eq. (18), we can see that this in-
terpretation requires that � = ⇤1, i.e., the false vacuum
decay rate is given by the lowest non-zero eigenvalue.

Furthermore, this identification suggests that we
should be able to find the false vacuum probability dis-
tribution P1(�) by assuming the mixed state (18), and
following it back to the time t0 when the system was
fully in the false vacuum state. This gives

P1(�) = P (t0;�) = Peq(�) + c̄0 0(�) 1(�), (20)

where c̄0 = c0 exp(�⇤1t0). This is a correctly normalised
probability distribution because the eigenvalues are or-
thogonal,

Z
d�P1(�) =

Z
d�Peq(�) + c̄0

Z
d� 0(�) 1(�)

=

Z
d�Peq(�) = 1. (21)

However, it depends on the value that is chosen for the
coe�cient c̄0 or, equivalently, how far back in time one
follows the evolution. In order for P1 to be a well-defined
probability distribution, it needs to be non-negative, and
this means that the coe�cient c̄0 has to be in the range

�
1

max  1

 0

 c̄0  �
1

min  1

 0

. (22)

Note that  0 can be chosen to be positive, and  1 has
one zero. Therefore max  1

 0
> 0 min  1

 0
< 0.

This suggests that the two possible optimal choices for
c̄0 are the two extremes of the range (22). In practice,
the ratio  1/ 0 is often a monotonic function and can
be chosen to be an increasing function, in which case
these two choices correspond to the limits of � ! 1 and

� ! �1, respectively. If the false minimum is, say, to
the right of the true minimum, the appropriate choice
for P1 is the one in which the probability distribution is
localised towards the positive values of �, which means
that c̄0 > 0, and hence

c̄0 = �
1

max  1

 0

= � lim
�!1

 0(�)

 1(�)
. (23)

In summary, when the potential is bounded from be-
low, the decay rate of the false vacuum state is given
by the lowest non-zero eigenvalue, � = ⇤1, and the field
probability distribution in this false vacuum state can be
written as

P1(�) =  0(�)


 0(�) �

✓
lim
�0!1

 0(�0)

 1(�0)

◆
 1(�)

�
. (24)

IV. VACUUM DECAY FOR UNBOUNDED
POTENTIALS

Interestingly, the stochastic formalism can be also ap-
plied to potentials that are unbounded from below. Such
potentials are interesting for many reasons; the Standard
Model potential at very high energies can be described
by a negative quartic potential, and more generally, e↵ec-
tive field theories with unknown high-energy origin can
be described with unbounded potentials without neces-
sarily jeopardizing their physical applicability.

Let us assume that we have a potential V (�) that is
finite everywhere but is not bounded from below, so that
it approaches �1 as either � ! 1 or � ! �1, or both.
In that case the function  0(�) defined by Eq. (7) still
satisfies the eigenvalue equation (4) with ⇤0 = 0, but it
does not satisfy the correct boundary conditions and it
is therefore not a valid eigenfunction. Correspondingly,
Peq(�) defined by Eq. (17) is not normalisable, and there-
fore does not give an equilibrium probability distribution.

Instead, the lowest eigenvalue, which we denote by ⇤1

is positive, and the corresponding eigenfunction  1(�)
allows us to define the probability distribution

P1(�) =
1

N
 0(�) 1(�), (25)

where the normalisation constant is

N =

Z
d� 0(�) 1(�). (26)

Note that because  0 is not an eigenfunction, it is not
orthogonal to  1, and therefore N 6= 0. Because  1 is
the lowest eigenfunction, it has no zeros, and therefore
P1(�) is a non-negative function.

Of course, P1(�) is not an equilibrium probability dis-
tribution as such. If the field has initially, at time t0,
the probability distribution P1(�), then it follows from
Eqs. (8) and (9) that at a later time t, it has probability
distribution

P (t;�) = e�⇤1(t�t0)P1(�). (27)

[arXiv:2204.02875  ECM, Rajantie]    



Which we found has the nice property

The Stochastic formalism

6

�1

0

1

↵̄ = 1.2, � = 0.1

�+
1 �+

0
P+

1 P+
eq

�4 �2 0 2 4

�̂

�1

0

1

↵̄ = 0.8, � = 0.2

�+
1 �+

0

�4 �2 0 2 4

�̂

P+
1 P+

eq

v+
�10

0

10

v+

v+

v+
�10

0

10

v+

v+

FIG. 4. Comparison between  +
0 ,  +

1 (left) and Peq, P+
1

(right) for two sets of parameter values. The corresponding
potentials are shown for illustration.
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potentials. The corresponding potentials are shown for illus-
tration.

VI. DISCUSSION

In this article, we have shown how the Starobinsky-
Yokoyama stochastic approach can be used to describe
vacuum decay in scalar field theories in de Sitter space,
both in the case of potentials that are bounded and un-
bounded from below. In both cases, the decay rate per
unit time of the metastable vacuum is given by the lowest
non-zero eigenvalue of the eigenvalue equation associated
to the Fokker-Planck equation, which is a known result
from stochastic analysis [17].

We also showed that the corresponding eigenfunction
determines the observables in the metastable vacuum
state. In the case of an unbounded potential, the re-

FIG. 6. The numerical probability density for large field val-
ues compared to Eq. (37). On the left, for smaller field values,
we show a linear scale while on the right we switch to loga-
rithmic for larger field values. Both expressions agree very
well from �̂ ⇠ 4 and continue to do so across several orders of
magnitude.

lation is straightforward and unambiguous. In bounded
potentials, a probability distribution cannot be uniquely
associated with the metastable vacuum state, but by fol-
lowing the time evolution backwards as far as possible, we
determined a function that can be given that interpreta-
tion. These probability distributions are useful for com-
puting predictions for observables that would be mea-
sured by an observer in the metastable vacuum.

The formalism and methods presented in this article,
facilitate phenomenological studies of phase transitions
and vacuum decay during inflation. In the case of the
Standard Model, which famously exhibits an unbounded
potential at higher energies [2], the prediction of a single
vacuum decay event in the past light cone would rule out
the theory, and hence require some new physics Beyond
the Standard Model, phase transitions during inflation
imply a primordial gravitational wave signature that will
be probed at future experiments [22]. This paper sets
the ground for such precision calculations.

In this article we focused on vacuum decay purely
within the stochastic approach. While this helps set a
clear interpretation of vacuum decay in the stochastic
formalism, a precision calculation needs to nevertheless
put our results in the context of quantum field theory. As
shown in Ref. [23], it is then possible to e.g. incorporate
quantum corrections at the one-loop order.
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This shows concretely that probability is not conserved
in the case of an unbounded potential. This is because
there is a non-zero probability per unit time � = ⇤1 > 0
that the field rolls down the potential and reaches infinity.
Therefore, just like in the case of the bounded potential,
⇤1 gives the vacuum decay rate.

If we consider an observer whose existence requires the
field � to have a finite value, and which gets destroyed
if the field ever reaches infinity, then the observer will
only ever observe the conditional probability distribution
which assumes that the field is finite. At any time t, this
is given by

P
⇣
t;�

���|�| < 1

⌘
=

P (t;�)R1
�1 d�0P (t;�0)

= P1(�). (28)

Therefore, the observer actually observes the field in an
time-independent probability distribution P1(�).

For this construction to work, the normalisation con-
stant N defined in Eq. (26) must be finite. This is not
obvious because  0(�) diverges at infinity. We can use
the supersymmetry transformation to investigate this. If
we assume that lim�!±1 v(�) = �1, the superpartner
ṽ(�) = �v(�) is bounded from below. Its lowest eigen-
function, with zero eigenvalue, is

 ̃0(�) / e�ṽ(�) = ev(�). (29)

We can also use the perturbative techniques from Ref. [9]
to find the asymptotic behaviour of the next eigenfunc-
tion  ̃1(�) at large field values,

 ̃1(�) /  ̃0(�)

�2✏1 ̃0(�)

Z 1

�

d�0
Z

�
0

�

d�00 e2ṽ(�
00)�2ṽ(�0),(30)

where ✏1 = 4⇡2⇤1/H3 is the perturbative expansion pa-
rameter. Applying the inverse supersymmetry transfor-
mation (15), we find the perturbative expression for the
lowest eigenstate in the original unstable theory,

 1(�) =
1

⇤1
A† ̃1(�) / e�v(�)

Z 1

�

d�0e2v(�
0). (31)

Note that, in fact, this is the same as �(1)
st defined in

Eq. (52) of [9].
If we assume that v(�) ⇠ �g�↵, ↵ > 0, as � ! 1,

then

 1(�) ⇠ �

✓
1

↵
,�↵

◆
⇠ �1�↵e�g�

↵

, (32)

where �(s, x) is the incomplete gamma function. The
probability distribution P1(�) then behaves asymptoti-
cally as

P1(�) ⇠ �1�↵, (33)

and is normalisable if ↵ > 2. Therefore the construc-
tion works for unstable potentials that are steeper than
harmonic.

As a consistency check, we can also see that the time-
dependent probability distribution P (t;�) satisfies the
continuity equation

@P

@t
=

@

@�
J, (34)

where

J(�) =
H3

4⇡2

✓
1

2

@P

@�
+ v0P

◆
. (35)

Integrating over �, Eq. (27) implies

� ⇤1 = lim
�!1

(J(�) � J(��)) = lim
�!1

H3

2⇡2
v0(�)P1(�),

(36)
where we have assumed a symmetric potential, v(��) =
v(�), for simplicity. From this we can see that we must
have

P1(�) ⇠
2⇡2⇤1

H3

1

|v0(�)|
, (37)

which is consistent with Eq. (33). In the case of non-
symmetric potentials, while Eq. (37) would have a di↵er-
ent constant prefactor, it would still be proportional to
1/|v0(�)|.

In summary, for an unbounded potential, the vacuum
decay rate is give by � = ⇤1, just like for bounded po-
tentials, and the false vacuum “equilibrium” probability
distribution is given by Eq. (25).

V. NUMERICAL RESULTS

In this section we take our discussion above and ap-
ply it to a concrete case. We start by considering the
bounded scalar potential

V +(�) =
3H4

4⇡2
v+ = µ3��

1

2
m̄2�2 + ��4, (38)

where � > 0, and the unbounded potential V �(�) =
�V +(�), which is also the superpartner of V +. In
the following we will use superscripts + and � to in-
dicate whether the quantity relates to the bounded or
unbounded from below cases respectively.

As help for numerical calculations, we will cast the
re-scaled potential v+ as a function of dimensionless pa-
rameters ↵̄ = m̄2/�

1
2 H2, � = µ3/�

1
4 H3 and the dimen-

sionless scalar field �̂ = �
1
4 ⌦
H

� where ⌦ = 1 +
p
↵̄ + �.

This results in the dimensionless potential

3⌦

⇡2
v+ = 4��̂+ 2↵̄�̂2 + �̂4. (39)

We show v+ and v� = �v in Fig. 1 (for ↵̄ = 0.8 and
� = 0.1) to illustrate that one is a bounded potential
with true and false vacua and the other an unbounded
potential with a minimum around the origin.

Not so easy with unbounded potentials! There is no 
equilibrium probability. However

3

theory, in which states correspond to probability distri-
butions rather than single field values.

Assuming this hierarchy of eigenvalues, the probability
distribution at asymptotically late times is given by

P (t;�) = Peq(�)+c0 0(�) 1(�)e�⇤1t+O
�
e�⇤2t

�
, (18)

where again c0 is a constant that can be determined from
initial conditions.

Alternative to the paragraph above: To interpret this,
assume that in the false vacuum state the field has a
probability distribution P1(�), which we would like to
determine. If the system is initially (at time t0) in this
metastable state, we expect it to have a decreasing prob-
ability p1(t) = exp(��(t � t0)) of being still in the false
vacuum state P1(�). Here � is the false vacuum decay
rate. Correspondingly, the system has probability (1�p1)
of being in the true vacuum state Peq(�).

The field probability distribution in such a mixed state
is

P (t;�) = (1 � p1(t))Peq(�) + p1(t)P1(�) (19)

= Peq(�) + p1(t)(P1(�) � Peq(�)).

Comparing this with Eq. (18), we can see that this in-
terpretation requires that � = ⇤1, i.e., the false vacuum
decay rate is given by the lowest non-zero eigenvalue.

Furthermore, this identification suggests that we
should be able to find the false vacuum probability dis-
tribution P1(�) by assuming the mixed state (18), and
following it back to the time t0 when the system was
fully in the false vacuum state. This gives

P1(�) = P (t0;�) = Peq(�) + c̄0 0(�) 1(�), (20)

where c̄0 = c0 exp(�⇤1t0). This is a correctly normalised
probability distribution because the eigenvalues are or-
thogonal,

Z
d�P1(�) =

Z
d�Peq(�) + c̄0

Z
d� 0(�) 1(�)

=

Z
d�Peq(�) = 1. (21)

However, it depends on the value that is chosen for the
coe�cient c̄0 or, equivalently, how far back in time one
follows the evolution. In order for P1 to be a well-defined
probability distribution, it needs to be non-negative, and
this means that the coe�cient c̄0 has to be in the range

�
1

max  1

 0

 c̄0  �
1

min  1

 0

. (22)

Note that  0 can be chosen to be positive, and  1 has
one zero. Therefore max  1

 0
> 0 min  1

 0
< 0.

This suggests that the two possible optimal choices for
c̄0 are the two extremes of the range (22). In practice,
the ratio  1/ 0 is often a monotonic function and can
be chosen to be an increasing function, in which case
these two choices correspond to the limits of � ! 1 and

� ! �1, respectively. If the false minimum is, say, to
the right of the true minimum, the appropriate choice
for P1 is the one in which the probability distribution is
localised towards the positive values of �, which means
that c̄0 > 0, and hence

c̄0 = �
1

max  1

 0

= � lim
�!1

 0(�)

 1(�)
. (23)

In summary, when the potential is bounded from be-
low, the decay rate of the false vacuum state is given
by the lowest non-zero eigenvalue, � = ⇤1, and the field
probability distribution in this false vacuum state can be
written as

P1(�) =  0(�)


 0(�) �

✓
lim
�0!1

 0(�0)

 1(�0)

◆
 1(�)

�
. (24)

IV. VACUUM DECAY FOR UNBOUNDED
POTENTIALS

Interestingly, the stochastic formalism can be also ap-
plied to potentials that are unbounded from below. Such
potentials are interesting for many reasons; the Standard
Model potential at very high energies can be described
by a negative quartic potential, and more generally, e↵ec-
tive field theories with unknown high-energy origin can
be described with unbounded potentials without neces-
sarily jeopardizing their physical applicability.

Let us assume that we have a potential V (�) that is
finite everywhere but is not bounded from below, so that
it approaches �1 as either � ! 1 or � ! �1, or both.
In that case the function  0(�) defined by Eq. (7) still
satisfies the eigenvalue equation (4) with ⇤0 = 0, but it
does not satisfy the correct boundary conditions and it
is therefore not a valid eigenfunction. Correspondingly,
Peq(�) defined by Eq. (17) is not normalisable, and there-
fore does not give an equilibrium probability distribution.

Instead, the lowest eigenvalue, which we denote by ⇤1

is positive, and the corresponding eigenfunction  1(�)
allows us to define the probability distribution

P1(�) =
1

N
 0(�) 1(�), (25)

where the normalisation constant is

N =

Z
d� 0(�) 1(�). (26)

Note that because  0 is not an eigenfunction, it is not
orthogonal to  1, and therefore N 6= 0. Because  1 is
the lowest eigenfunction, it has no zeros, and therefore
P1(�) is a non-negative function.

Of course, P1(�) is not an equilibrium probability dis-
tribution as such. If the field has initially, at time t0,
the probability distribution P1(�), then it follows from
Eqs. (8) and (9) that at a later time t, it has probability
distribution

P (t;�) = e�⇤1(t�t0)P1(�). (27)

3

theory, in which states correspond to probability distri-
butions rather than single field values.

Assuming this hierarchy of eigenvalues, the probability
distribution at asymptotically late times is given by

P (t;�) = Peq(�)+c0 0(�) 1(�)e�⇤1t+O
�
e�⇤2t

�
, (18)

where again c0 is a constant that can be determined from
initial conditions.

Alternative to the paragraph above: To interpret this,
assume that in the false vacuum state the field has a
probability distribution P1(�), which we would like to
determine. If the system is initially (at time t0) in this
metastable state, we expect it to have a decreasing prob-
ability p1(t) = exp(��(t � t0)) of being still in the false
vacuum state P1(�). Here � is the false vacuum decay
rate. Correspondingly, the system has probability (1�p1)
of being in the true vacuum state Peq(�).

The field probability distribution in such a mixed state
is

P (t;�) = (1 � p1(t))Peq(�) + p1(t)P1(�) (19)

= Peq(�) + p1(t)(P1(�) � Peq(�)).

Comparing this with Eq. (18), we can see that this in-
terpretation requires that � = ⇤1, i.e., the false vacuum
decay rate is given by the lowest non-zero eigenvalue.

Furthermore, this identification suggests that we
should be able to find the false vacuum probability dis-
tribution P1(�) by assuming the mixed state (18), and
following it back to the time t0 when the system was
fully in the false vacuum state. This gives

P1(�) = P (t0;�) = Peq(�) + c̄0 0(�) 1(�), (20)

where c̄0 = c0 exp(�⇤1t0). This is a correctly normalised
probability distribution because the eigenvalues are or-
thogonal,
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Z
d� 0(�) 1(�)
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Z
d�Peq(�) = 1. (21)

However, it depends on the value that is chosen for the
coe�cient c̄0 or, equivalently, how far back in time one
follows the evolution. In order for P1 to be a well-defined
probability distribution, it needs to be non-negative, and
this means that the coe�cient c̄0 has to be in the range

�
1

max  1

 0

 c̄0  �
1

min  1

 0

. (22)

Note that  0 can be chosen to be positive, and  1 has
one zero. Therefore max  1

 0
> 0 min  1

 0
< 0.

This suggests that the two possible optimal choices for
c̄0 are the two extremes of the range (22). In practice,
the ratio  1/ 0 is often a monotonic function and can
be chosen to be an increasing function, in which case
these two choices correspond to the limits of � ! 1 and

� ! �1, respectively. If the false minimum is, say, to
the right of the true minimum, the appropriate choice
for P1 is the one in which the probability distribution is
localised towards the positive values of �, which means
that c̄0 > 0, and hence

c̄0 = �
1

max  1

 0

= � lim
�!1

 0(�)

 1(�)
. (23)

In summary, when the potential is bounded from be-
low, the decay rate of the false vacuum state is given
by the lowest non-zero eigenvalue, � = ⇤1, and the field
probability distribution in this false vacuum state can be
written as

P1(�) =  0(�)
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In that case the function  0(�) defined by Eq. (7) still
satisfies the eigenvalue equation (4) with ⇤0 = 0, but it
does not satisfy the correct boundary conditions and it
is therefore not a valid eigenfunction. Correspondingly,
Peq(�) defined by Eq. (17) is not normalisable, and there-
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is positive, and the corresponding eigenfunction  1(�)
allows us to define the probability distribution

P1(�) =
1

N
 0(�) 1(�), (25)

where the normalisation constant is
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Note that because  0 is not an eigenfunction, it is not
orthogonal to  1, and therefore N 6= 0. Because  1 is
the lowest eigenfunction, it has no zeros, and therefore
P1(�) is a non-negative function.

Of course, P1(�) is not an equilibrium probability dis-
tribution as such. If the field has initially, at time t0,
the probability distribution P1(�), then it follows from
Eqs. (8) and (9) that at a later time t, it has probability
distribution

P (t;�) = e�⇤1(t�t0)P1(�). (27)
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This shows concretely that probability is not conserved
in the case of an unbounded potential. This is because
there is a non-zero probability per unit time � = ⇤1 > 0
that the field rolls down the potential and reaches infinity.
Therefore, just like in the case of the bounded potential,
⇤1 gives the vacuum decay rate.

If we consider an observer whose existence requires the
field � to have a finite value, and which gets destroyed
if the field ever reaches infinity, then the observer will
only ever observe the conditional probability distribution
which assumes that the field is finite. At any time t, this
is given by

P
⇣
t;�

���|�| < 1

⌘
=

P (t;�)R1
�1 d�0P (t;�0)

= P1(�). (28)

Therefore, the observer actually observes the field in an
time-independent probability distribution P1(�).

For this construction to work, the normalisation con-
stant N defined in Eq. (26) must be finite. This is not
obvious because  0(�) diverges at infinity. We can use
the supersymmetry transformation to investigate this. If
we assume that lim�!±1 v(�) = �1, the superpartner
ṽ(�) = �v(�) is bounded from below. Its lowest eigen-
function, with zero eigenvalue, is

 ̃0(�) / e�ṽ(�) = ev(�). (29)

We can also use the perturbative techniques from Ref. [9]
to find the asymptotic behaviour of the next eigenfunc-
tion  ̃1(�) at large field values,

 ̃1(�) /  ̃0(�)

�2✏1 ̃0(�)

Z 1

�

d�0
Z

�
0

�

d�00 e2ṽ(�
00)�2ṽ(�0),(30)

where ✏1 = 4⇡2⇤1/H3 is the perturbative expansion pa-
rameter. Applying the inverse supersymmetry transfor-
mation (15), we find the perturbative expression for the
lowest eigenstate in the original unstable theory,

 1(�) =
1

⇤1
A† ̃1(�) / e�v(�)

Z 1

�

d�0e2v(�
0). (31)

Note that, in fact, this is the same as �(1)
st defined in

Eq. (52) of [9].
If we assume that v(�) ⇠ �g�↵, ↵ > 0, as � ! 1,

then

 1(�) ⇠ �

✓
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↵
,�↵

◆
⇠ �1�↵e�g�

↵

, (32)

where �(s, x) is the incomplete gamma function. The
probability distribution P1(�) then behaves asymptoti-
cally as

P1(�) ⇠ �1�↵, (33)

and is normalisable if ↵ > 2. Therefore the construc-
tion works for unstable potentials that are steeper than
harmonic.

As a consistency check, we can also see that the time-
dependent probability distribution P (t;�) satisfies the
continuity equation

@P

@t
=

@

@�
J, (34)

where

J(�) =
H3

4⇡2

✓
1

2

@P

@�
+ v0P

◆
. (35)

Integrating over �, Eq. (27) implies

� ⇤1 = lim
�!1

(J(�) � J(��)) = lim
�!1

H3

2⇡2
v0(�)P1(�),

(36)
where we have assumed a symmetric potential, v(��) =
v(�), for simplicity. From this we can see that we must
have

P1(�) ⇠
2⇡2⇤1

H3

1

|v0(�)|
, (37)

which is consistent with Eq. (33). In the case of non-
symmetric potentials, while Eq. (37) would have a di↵er-
ent constant prefactor, it would still be proportional to
1/|v0(�)|.

In summary, for an unbounded potential, the vacuum
decay rate is give by � = ⇤1, just like for bounded po-
tentials, and the false vacuum “equilibrium” probability
distribution is given by Eq. (25).

V. NUMERICAL RESULTS

In this section we take our discussion above and ap-
ply it to a concrete case. We start by considering the
bounded scalar potential

V +(�) =
3H4

4⇡2
v+ = µ3��

1

2
m̄2�2 + ��4, (38)

where � > 0, and the unbounded potential V �(�) =
�V +(�), which is also the superpartner of V +. In
the following we will use superscripts + and � to in-
dicate whether the quantity relates to the bounded or
unbounded from below cases respectively.

As help for numerical calculations, we will cast the
re-scaled potential v+ as a function of dimensionless pa-
rameters ↵̄ = m̄2/�

1
2 H2, � = µ3/�

1
4 H3 and the dimen-

sionless scalar field �̂ = �
1
4 ⌦
H

� where ⌦ = 1 +
p
↵̄ + �.

This results in the dimensionless potential

3⌦

⇡2
v+ = 4��̂+ 2↵̄�̂2 + �̂4. (39)

We show v+ and v� = �v in Fig. 1 (for ↵̄ = 0.8 and
� = 0.1) to illustrate that one is a bounded potential
with true and false vacua and the other an unbounded
potential with a minimum around the origin.
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in the case of an unbounded potential. This is because
there is a non-zero probability per unit time � = ⇤1 > 0
that the field rolls down the potential and reaches infinity.
Therefore, just like in the case of the bounded potential,
⇤1 gives the vacuum decay rate.

If we consider an observer whose existence requires the
field � to have a finite value, and which gets destroyed
if the field ever reaches infinity, then the observer will
only ever observe the conditional probability distribution
which assumes that the field is finite. At any time t, this
is given by
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Therefore, the observer actually observes the field in an
time-independent probability distribution P1(�).

For this construction to work, the normalisation con-
stant N defined in Eq. (26) must be finite. This is not
obvious because  0(�) diverges at infinity. We can use
the supersymmetry transformation to investigate this. If
we assume that lim�!±1 v(�) = �1, the superpartner
ṽ(�) = �v(�) is bounded from below. Its lowest eigen-
function, with zero eigenvalue, is

 ̃0(�) / e�ṽ(�) = ev(�). (29)

We can also use the perturbative techniques from Ref. [9]
to find the asymptotic behaviour of the next eigenfunc-
tion  ̃1(�) at large field values,
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where �(s, x) is the incomplete gamma function. The
probability distribution P1(�) then behaves asymptoti-
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and is normalisable if ↵ > 2. Therefore the construc-
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which is consistent with Eq. (33). In the case of non-
symmetric potentials, while Eq. (37) would have a di↵er-
ent constant prefactor, it would still be proportional to
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With U1loop the constraint effective potential

3

not include contributions from the flux crossing the bar-
rier back to the false vacuum. These extra contributions
exist when there is a minimum on the other side of the
barrier, that is, the true vacuum; but they don’t appear
if the potential is unbounded from below on the other
side of the barrier. Note also that the temperature can-
not grow indefinitely since we require that it is smaller
than �E to have a well defined initial state localized at
the false vacuum. The flux-over-population method leads
to a decay rate that factorizes into an equilibrium and a
non-equilibrium contribution [27–31]; thus, the one-loop
HM decay rate is given by

� =


2⇡

����
detS00 (�HM )

detS00 (�fv)

����
�1/2

e
�B for 2⇡T >  .

(II.10)
The factor of /(2⇡) is the non-equilibrium contribution,
commonly referred to as the dynamical factor, where 
is the growth rate of the unstable mode at the saddle-
point. To compute the dynamical prefactor, we look at
the scalar field equation of motion which is given by the
following Langevin equation

�
@
2
t
�r2

�
�(~x, t) +

@V (�)

@�
+ ⌘�̇(~x, t) = ⇠(~x, t) , (II.11)

where the damping coe�cient is ⌘ = 3H and ⇠ is the
Gaussian white noise. Expanding the scalar field � in
a series around �top and taking the ansatz � � �top =
Ce

t, one finds that

 = �3

2
H

 
1�

r
1 +

4|V 00
top|

9H2

!
. (II.12)

In obtaining the result above, we have assumed that the
field gradients and the noise term are subdominant. In
several applications where dissipation can be neglected,
the dynamical factor can be shown to be given by the
negative eigenvalue. This can not be done in our case
because the dissipation, given by the damping coe�cient
⌘, is proportional to the Hubble parameter which can-

not be much smaller than
q

|V 00
top|, see Eq. (II.6). Tak-

ing the small dissipation limit is equivalent to taking
|V 00

top|/H2 � 1. In this limit,  approaches the HM nega-

tive eigenvalue
q

|V 00
top|, but the Hawking-Moss instanton

does not describe tunneling anymore. One can also note
that the HM-CdL transition occurs as we approach the
limit  = H. In the large temperature (large friction)
limit we have �̈ ⌧ 3H�̇ which leads to the simplified
expression for the prefactor


high T =

|V 00
top|
3H

. (II.13)

We can further simplify the expression of the decay

rate by writing the result explicitly
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,

(II.14)
where we have expanded the field as � = �b +

P
n
cn n,

with  n are the eigenfunctions of S00, and rewritten the
integration measure in terms of the coe�cients cn. Fur-
thermore, we integrated over the homogeneous modes  0.
This expression can be rewritten in terms of the con-
straint e↵ective potential [32, 33], which is defined as

e
�
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�

✓
1

V

Z
� d4x� �b

◆

=

Z Y

n

dcnp
2⇡

e
�S� 1

2

P
n
c
2
n
�n�(c0) ,

(II.15)

where the delta function tells us to integrate over the
inhomogeneous modes only. Note that because of the
finite volume of the de Sitter space, di↵erent definitions
of the e↵ective potential are not equivalent.
Thus, we can write the decay rate as

� =


2⇡

s
V

00
fv

|V 00
top|

e
� 8⇡2�U

1 loop

3H4 , (II.16)

and in the high temperature limit (|V 00
top|/(4⇡2) ⌧ T

2),
we find

�high T =

q
V

00
fv|V 00

top|

2⇡
e
� 8⇡2�U

1 loop

3H4 . (II.17)

The simplicity and validity of our analysis heavily relies
on the fact that the Hawking-Moss solution is given by
a constant saddle-point � = �top. This allows for the
simple interpretation of the escape rate as the tunneling
rate, since both end points correspond to the top of the
barrier. Similarly this avoids possible issues with double-
counting of modes when using the constraint e↵ective
potential since our saddle-point is simply a constant [30,
34].
One can note that Eq. (II.16) is the 0-dimensional es-

cape rate for a scalar field in a fixed de Sitter spacetime
with a potential given by the constraint 1-loop e↵ective
potential U

1 loop. This is a useful expression, since it
helps us to compare the HM decay rate with the results
from the stochastic formalism where the decay rate cor-
responds to the lowest eigenvalue of the FP operator.
When there is only one direction in field space in which
the decay can occur, the 0-dimensional escape rate cor-
responds to the stochastic formalism decay rate as long
as we are within in the weak noise limit [35, 36]. In
the following section, we will show with explicit exam-
ples that the HM calculation agrees with the stochastic

The one-loop decay rate is
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We investigate the decay rate of a false vacuum state in de Sitter space at high Hubble rates,
using two methods: the Hawking-Moss instanton method which is fully quantum mechanical but
relies on the saddle-point approximation, and the Starobinsky-Yokoyama stochastic approach which
is non-perturbative but does not include quantum e↵ects. We use the flux-over-population method
to compute the Hawking-Moss decay rate at one-loop order, and demonstrate that in its domain
of validity, it is reproduced by the stochastic calculation using the one-loop constraint e↵ective
potential. This suggests that the stochastic approach together with the constraint e↵ective potential
can be used to accurately describe vacuum decay beyond the saddle-point approximation.

I. INTRODUCTION

An ubiquitous phenomenon of quantum field theories
is quantum tunneling which renders a classically stable
vacuum metastable and leads to phase transitions. Pre-
cision calculations of the decay rate of such metastable
vacuum are relevant for understanding and constraining
possible physics beyond the standard model (SM) and
non-minimal gravitational couplings. Given the current
measurements of the SM Higgs and top quark masses
[1, 2], our Universe seems to lie in a metastable state
which should have a small enough decay rate [3–7]. In
the early Universe the decay rate can be enhanced by
di↵erent mechanisms [8]; hence, rigorous calculations of
such decay rates are important to understand the con-
straints on new physics.

In flat space, a formal definition of the decay rate
of the false vacuum is given by � = �2Im(E) =
2Im (limT!1(lnZ)/T ), where Z is the path integral.
The decay rate per unit volume can be computed using
the saddle-point approximation which at next-to-leading
(NLO) gives [9, 10]

�

V =

✓
B

2⇡

◆2 ����
det0 S00 (�b)

detS00 (�fv)

����
�1/2

e
�BR (I.1)

where �b is the saddle-point or bounce, �fv is the false vac-
uum, the prime on the determinant indicates that only
non-zero modes are included, B = S (�b) � S (�fv), and
S is the Euclidean action. Note that the functional de-
terminant ratio is divergent and can be regularized using
standard QFT methods. A formal definition of the de-
cay rate in curved spacetimes is not available, yet one can
push forward by making analogies with the flat space re-
sult. Nevertheless, at high curvatures this analogy breaks
down. In this letter we propose to take seriously the ther-
mal interpretation of de Sitter (dS) to compute precise
decay rates in the early Universe.

II. DECAY RATE IN DS SPACE

In the following, we will focus on decays from de Sitter
to de Sitter spacetimes. The generalization of the decay
rate computation to curved spacetimes was proposed in
[11]. At small curvatures the Coleman-de Luccia bounce
is expected to drive the decay, but as the curvature is
increased a solution that has no flat space analog takes
over, this is the Hawking-Moss instanton [12]. At such
large curvatures, the decay rate can also be computed
through a di↵erent method dubbed the stochastic for-
malism [13, 14]. In the following we give a short review
of both approaches. We will focus on computing the one-
loop corrections through saddle-point approximation and
comparing this result with the stochastic formalism one.

A. Stochastic approach

The stochastic formalism relies on splitting a light
quantum field living in a dS space into long (classical)
and short (quantum) modes, and describing the latter
as stochastic noise. This framework has been shown to
be useful for perturbative and non-perturbative quantum
field theory computations in dS backgrounds, particu-
larly in addressing issues for light fields [15–18]. Assum-
ing that the long-wavelength modes, �, satisfy an over-
damped Langevin equation, it is found that the one-point
probability distribution P (t;�) of � at time t follows the
Fokker-Planck (FP) equation

@P̃ (t;�)

@t
=

3H3

4⇡2
D̃�P̃ (t;�) , (II.1)

D̃� =
1

2

@
2

@�2
� 1

2

�
v
0(�)2 � v

00(�)
�
, (II.2)

v(�) =
4⇡2

3H4
V (�) , (II.3)

P̃ (t;�) = e
4⇡2

V (�)

3H4 P (t;�) . (II.4)

By expanding the probability in terms of the eigenfunc-
tions of the FP equation, it can be found that the decay
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Which is very hard to calculate even in simple theories. 
Using among other approximations, the saddle point 
approximation and treatment of different scales with 
statistical/field theory approaches one gets:

Which looks a lot like the escape rate of a 
particle with the potential U1loop

PERTURBATION THEORY STOCHASTIC APPROACH

The Stochastic approach is classical but non-
perturbative. It captures vacuum decay using the 
LO potential but no quantum corrections. 

What if we use the constraint effective potential 
inside the Stochastic formalism to capture them?

3

not include contributions from the flux crossing the bar-
rier back to the false vacuum. These extra contributions
exist when there is a minimum on the other side of the
barrier, that is, the true vacuum; but they don’t appear
if the potential is unbounded from below on the other
side of the barrier. Note also that the temperature can-
not grow indefinitely since we require that it is smaller
than �E to have a well defined initial state localized at
the false vacuum. The flux-over-population method leads
to a decay rate that factorizes into an equilibrium and a
non-equilibrium contribution [27–31]; thus, the one-loop
HM decay rate is given by

� =


2⇡

����
detS00 (�HM )

detS00 (�fv)

����
�1/2

e
�B for 2⇡T >  .

(II.10)
The factor of /(2⇡) is the non-equilibrium contribution,
commonly referred to as the dynamical factor, where 
is the growth rate of the unstable mode at the saddle-
point. To compute the dynamical prefactor, we look at
the scalar field equation of motion which is given by the
following Langevin equation

�
@
2
t
�r2

�
�(~x, t) +

@V (�)

@�
+ ⌘�̇(~x, t) = ⇠(~x, t) , (II.11)

where the damping coe�cient is ⌘ = 3H and ⇠ is the
Gaussian white noise. Expanding the scalar field � in
a series around �top and taking the ansatz � � �top =
Ce

t, one finds that

 = �3

2
H

 
1�

r
1 +

4|V 00
top|

9H2

!
. (II.12)

In obtaining the result above, we have assumed that the
field gradients and the noise term are subdominant. In
several applications where dissipation can be neglected,
the dynamical factor can be shown to be given by the
negative eigenvalue. This can not be done in our case
because the dissipation, given by the damping coe�cient
⌘, is proportional to the Hubble parameter which can-

not be much smaller than
q

|V 00
top|, see Eq. (II.6). Tak-

ing the small dissipation limit is equivalent to taking
|V 00

top|/H2 � 1. In this limit,  approaches the HM nega-

tive eigenvalue
q

|V 00
top|, but the Hawking-Moss instanton

does not describe tunneling anymore. One can also note
that the HM-CdL transition occurs as we approach the
limit  = H. In the large temperature (large friction)
limit we have �̈ ⌧ 3H�̇ which leads to the simplified
expression for the prefactor


high T =

|V 00
top|
3H

. (II.13)

We can further simplify the expression of the decay

rate by writing the result explicitly

� =


2⇡

p
V

00
fvq

|V 00
top|

R Q
n 6=0

dcb
np
2⇡

e
�Sb� 1

2

P
n 6=0(c

b

n
)2�b

n

R Q
n 6=0

dcfv
np
2⇡

e
�Sfv� 1

2

P
n 6=0(c

fv
n
)2�fv

n

,

(II.14)
where we have expanded the field as � = �b +

P
n
cn n,

with  n are the eigenfunctions of S00, and rewritten the
integration measure in terms of the coe�cients cn. Fur-
thermore, we integrated over the homogeneous modes  0.
This expression can be rewritten in terms of the con-
straint e↵ective potential [32, 33], which is defined as

e
�

R
d4

xU
1 loop

=

Z
d� e�S[�]

�

✓
1

V

Z
� d4x� �b

◆

=

Z Y

n

dcnp
2⇡

e
�S� 1

2

P
n
c
2
n
�n�(c0) ,

(II.15)

where the delta function tells us to integrate over the
inhomogeneous modes only. Note that because of the
finite volume of the de Sitter space, di↵erent definitions
of the e↵ective potential are not equivalent.
Thus, we can write the decay rate as

� =


2⇡

s
V

00
fv

|V 00
top|

e
� 8⇡2�U

1 loop

3H4 , (II.16)

and in the high temperature limit (|V 00
top|/(4⇡2) ⌧ T

2),
we find

�high T =

q
V

00
fv|V 00

top|

2⇡
e
� 8⇡2�U

1 loop

3H4 . (II.17)

The simplicity and validity of our analysis heavily relies
on the fact that the Hawking-Moss solution is given by
a constant saddle-point � = �top. This allows for the
simple interpretation of the escape rate as the tunneling
rate, since both end points correspond to the top of the
barrier. Similarly this avoids possible issues with double-
counting of modes when using the constraint e↵ective
potential since our saddle-point is simply a constant [30,
34].
One can note that Eq. (II.16) is the 0-dimensional es-

cape rate for a scalar field in a fixed de Sitter spacetime
with a potential given by the constraint 1-loop e↵ective
potential U

1 loop. This is a useful expression, since it
helps us to compare the HM decay rate with the results
from the stochastic formalism where the decay rate cor-
responds to the lowest eigenvalue of the FP operator.
When there is only one direction in field space in which
the decay can occur, the 0-dimensional escape rate cor-
responds to the stochastic formalism decay rate as long
as we are within in the weak noise limit [35, 36]. In
the following section, we will show with explicit exam-
ples that the HM calculation agrees with the stochastic

Can we then get a formalism capturing both non 
perturbative and quantum corrections for decay 
rates in de Sitter?

2

rate of the false vacuum is given by the lowest non-zero
eigenvalue [19, 20].

Note that this description is intrinsically classical. As
we will show in this article, the thermally assisted tun-
neling approach suggests that one can use the constraint
one-loop e↵ective action in the stochastic approach to
capture quantum corrections.

B. Thermally Assisted Tunneling

1. Bounce solutions in de Sitter

When we include gravity and consider decays from de
Sitter to de Sitter, the topology of the bounce solution
is assumed to be a 4-sphere with the metric given by
ds

2 = d⇠
2 + ⇢(⇠)2d⌦2

3, where ⇢ has zeros at ⇠ = 0 and
⇠ = ⇠max. The bounce satisfies the boundary conditions
�
0(0) = �

0(⇠max) = 0, and while the field can approach
the false vacuum, it actually never reaches it. For sim-
plicity, we will consider a fixed de Sitter background,
⇢ = sin (⇠H)/H. This approximation is justified for
small barriers where�V ⌘ V (�top )�V (�tv) ⌧ V (�tv).
Here, we focus on the Hawking-Moss (HM) solution given
by � = �top. In analogy with flat space, the decay rate
is given as

�

V ⇠ e
�B

, B =
8⇡2�V

3H4
, (II.5)

The HM solution describes the transition of a Hubble
volume from the false vacuum to the top of the barrier.
In a similar manner to the flat space case, this bounce
solution describes a decay only when there is a single
negative eigenvalue of S

00
HM

which happens as long as
[21]

H >

q
|V 00

top|/2 . (II.6)

Thus the HM solution is expected to describe the decay
rate at large curvatures, when the Coleman-de Luccia
bounce doesn’t exist or its properties are di↵erent from
standard low curvature expectations.

2. Thermal interpretation

When considering tunneling in a fixed de Sitter back-
ground, one can interpret the bounce solutions as ther-
mally assisted tunneling. This is possible since in de Sit-
ter spacetimes we can define a temperature T = H/(2⇡),
due to the finiteness of its horizon. To compute the de-
cay rate in dS, we will work within the thermal inter-
pretation proposed by Brown and Weinberg [22] (based
on previous results by [23–25]). We start by considering
the scalar field living in a fixed dS spacetime whose ac-
tion can be thought as the thermal e↵ective action where
the thermal modes, in this case the gravitons, have been

integrated out. This EFT description is appropriate to
compute the tunneling rate since the bubble scale, H,
is much smaller than the scale of the thermal modes,
MPl. Intuitively, the tunneling process can be thought
of as consisting of two parts: the first one corresponding
to the thermal excitation of states localized in the false
vacuum with E > Efv and the second one the quantum
tunneling.
Formally, the decay rate can be defined as a thermal

average given by [23]

� =
1

Zfv

Z 1

0
dEe

��E
⇢(E)�(E) , (II.7)

where ⇢(E) is the density of states and �(E) is the tun-
neling rate for a given energy E. At high temperatures
(equivalently, high curvatures), the integral is dominated
by the E > Vtop region, and the decay rate can estimated
as [22]

�

V

high T.

⇠
Z 1

Etop

dEe
��E

e
�Efv ⇠ e

��(Etop�Efv) , (II.8)

which agrees with the HM estimate computed from path
integral methods in Eq. (II.5) when we identify the po-
tential energy increment in a horizon volume as

�E = Etop � Efv =
4⇡

3H3
fv

�V . (II.9)

From this, we see that the Hawking-Moss solution can
be interpreted as a purely thermal transition where the
thermal fluctuations push the field all the way to the
top of the potential barrier and then rolls down to the
true vacuum [26]. Thus we note that as we increase the
temperature, we observe a transition from the Coleman-
de Luccia to Hawking Moss driven decay rate.
The result for the decay rate in Eq.(II.5) is missing the

prefactor which requires a more careful calculation. Nev-
ertheless, we cannot use a straightforward generalization
of Eq. (I.1) since the Hawking-Moss case does not have
a clear analogy with flat space decays in the sense that
there are no zero modes and the dilute gas approxima-
tion cannot be used. Instead, we will perform a more
precise calculation by pushing forward the thermal inter-
pretation. At high temperatures, the physics is driven by
long-wavelength modes thus we can use a semi-classical
approach in this regime. To perform this semi-classical
approximation we use the flux-over-population method
for computing escape rates [27–30]. This calculation con-
sists of solving the Fokker-Planck equation for the scalar
field assuming an initial probability distribution local-
ized in the false vacuum which evolves to the equilibrium
state. The solution relies on the special boundary condi-
tions given by the steady-state solution which assumes a
source behind the false vacuum and a sink right after the
top of the barrier so that there is a constant probability
current across the barrier. This also guarantees that we
only compute the decay of the false vacuum and we do

And the thermal interpretation of de Sitter spacetime: 
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which we see that is indeed the case at large tempera-
tures (Eq.(II.17)).

The second case is a potential with a true and a false
vacuum where � = �5 = �6 = 0. We analyze this poten-
tial for di↵erent values of ↵ and � and show our results
in Fig. 2. As in the previous case, the thermal HM cal-
culation breaks down at small ↵. Meanwhile, for large
enough ↵ and � where there is a clear distinction be-
tween the false and true vacuum, we see perfect agree-
ment between the HM and stochastic approach. When
we decrease �, the vacua are nearly degenerate. The HM
result still describes the tunneling from the false vacuum
to the true vacuum, given the boundary conditions cho-
sen to solve the FP equation when computing the escape
rate. On the other hand, the stochastic approach in-
cludes the fluctuation bouncing back from true vacuum
to the false vacuum. We can see this by looking again
at the flipped potential �v. In that case there is a false
vacuum (previously the top of the wall) with one wall on
each side. Due to supersymmetry, the stochastic formal-
ism will simply give the same result, while for the HM
computation we have to account for the probability to
transition to either side, or in other words double the
decay rate. This is confirmed in the results from Fig. 2
where we compare twice the value of the HM decay rate
from Eq. (II.16), with the numerical computation for the
lowest eigenvalue of the FP equation.

We consider a third case which will demonstrate the
breaking of the HM result due to the non-gaussianity
of the path integral at the top of the barrier. In this
case, we take a potential with ↵ = � = �5 = 0. The
parameter � measures the curvature at the top of the
barrier, as we take � ! 0, V 00

top vanishes. Since we have

V
00
top << V

(4)
top , perturbation theory, and hence the saddle-

point approximation break. This is observed in Fig.3
where the HM result largely deviates from the stochastic
one as we decrease the coe�cient of the linear term.

Last, we analyze in detail the regions where the valid-
ity of the saddle-point approximation breaks. As a first
step, we should find the region where�E/T < 1. In prin-
ciple, this requires knowledge of the tree-level potential,
which we do not have for the present examples. Never-
theless, if we assume perturbation theory is valid then
�E/T ⇠ �E

1 loop
/T , where the 1-loop di↵erence in en-

ergies is given by the di↵erence between the constraint
e↵ective potential evaluated at the top of the barrier and
at the false vacuum. Thus, the region where perturba-
tion theory is valid and the saddle-point approximation
holds corresponds to �E

1 loop
/T > 1. Another possibil-

ity for the failure of the saddle-point approximation is
the breaking of perturbation theory. For the first two
examples analyzed here, we can see that the breaking of
perturbation theory at the false vacuum happens when
T < E

1 loop ⇠ m
4
/(�H3), that is at small ↵. In fact,

the lack of exponential suppression for the decay rate,
which can be understood as thermal fluctuations becom-
ing large and destabilizing the false vacuum, is equiva-
lent to the non-gaussianity of the path integral at the

FIG. 3: Breakdown of the thermal HM result. We have
taken H = 10�3

MPl, � = �0.3, and �6 = 60. For small
values of �, the path integral at the top of the barrier is
non-gaussian due to the curvature becoming extremely
small. At large � the potential seizes to have two vacua;

this happens when the HM result suddenly drops.

false vacuum. In this regime, the decay rate computed
from the HM bounce is not valid; which can be observe
in Figs. 1a and 2. The second region where the saddle-
point approximation breaks corresponds to the breaking
of perturbation theory near the top of the barrier. In the
third case analyzed above, this happens when the cur-
vature at the top of the potential approaches zero (see
Fig. 3). On the other hand, the stochastic approach as-
sumptions break down at higher masses, i.e. higher ↵,
since the over-damped approximation is used when solv-
ing the Langevin equation. In this regime, the prefactor
receives corrections that grow with the curvature at the
top of the barrier as seen in Fig. 1b.

IV. DISCUSSION

In this article, we computed an explicit analytic for-
mula for the decay rate in a de Sitter space at high Hubble
rates using the Hawking-Moss instanton approximation
including one-loop quantum corrections. We then showed
that the stochastic Starobinsky-Yokoyama approach re-
produces the Hawking-Moss result when the one-loop
constraint e↵ective potential is used instead of the clas-
sical potential, in the regime where both calculations are
valid. It is important to note that because of the finite
volume of the de Sitter space, di↵erent definitions of ef-
fective potential are not equivalent. For example, the
more commonly used perturbative e↵ective potential is
not equal to the constraint e↵ective potential.
Our results suggest that the stochastic approach

with the constraint e↵ective potential can give a non-
perturbative way of computing vacuum decay rates when
the saddle-point approximation, which the Hawking-
Moss calculation relies on, is not valid. Correspond-

6

which we see that is indeed the case at large tempera-
tures (Eq.(II.17)).

The second case is a potential with a true and a false
vacuum where � = �5 = �6 = 0. We analyze this poten-
tial for di↵erent values of ↵ and � and show our results
in Fig. 2. As in the previous case, the thermal HM cal-
culation breaks down at small ↵. Meanwhile, for large
enough ↵ and � where there is a clear distinction be-
tween the false and true vacuum, we see perfect agree-
ment between the HM and stochastic approach. When
we decrease �, the vacua are nearly degenerate. The HM
result still describes the tunneling from the false vacuum
to the true vacuum, given the boundary conditions cho-
sen to solve the FP equation when computing the escape
rate. On the other hand, the stochastic approach in-
cludes the fluctuation bouncing back from true vacuum
to the false vacuum. We can see this by looking again
at the flipped potential �v. In that case there is a false
vacuum (previously the top of the wall) with one wall on
each side. Due to supersymmetry, the stochastic formal-
ism will simply give the same result, while for the HM
computation we have to account for the probability to
transition to either side, or in other words double the
decay rate. This is confirmed in the results from Fig. 2
where we compare twice the value of the HM decay rate
from Eq. (II.16), with the numerical computation for the
lowest eigenvalue of the FP equation.

We consider a third case which will demonstrate the
breaking of the HM result due to the non-gaussianity
of the path integral at the top of the barrier. In this
case, we take a potential with ↵ = � = �5 = 0. The
parameter � measures the curvature at the top of the
barrier, as we take � ! 0, V 00

top vanishes. Since we have

V
00
top << V

(4)
top , perturbation theory, and hence the saddle-

point approximation break. This is observed in Fig.3
where the HM result largely deviates from the stochastic
one as we decrease the coe�cient of the linear term.

Last, we analyze in detail the regions where the valid-
ity of the saddle-point approximation breaks. As a first
step, we should find the region where�E/T < 1. In prin-
ciple, this requires knowledge of the tree-level potential,
which we do not have for the present examples. Never-
theless, if we assume perturbation theory is valid then
�E/T ⇠ �E

1 loop
/T , where the 1-loop di↵erence in en-

ergies is given by the di↵erence between the constraint
e↵ective potential evaluated at the top of the barrier and
at the false vacuum. Thus, the region where perturba-
tion theory is valid and the saddle-point approximation
holds corresponds to �E

1 loop
/T > 1. Another possibil-

ity for the failure of the saddle-point approximation is
the breaking of perturbation theory. For the first two
examples analyzed here, we can see that the breaking of
perturbation theory at the false vacuum happens when
T < E

1 loop ⇠ m
4
/(�H3), that is at small ↵. In fact,

the lack of exponential suppression for the decay rate,
which can be understood as thermal fluctuations becom-
ing large and destabilizing the false vacuum, is equiva-
lent to the non-gaussianity of the path integral at the

FIG. 3: Breakdown of the thermal HM result. We have
taken H = 10�3

MPl, � = �0.3, and �6 = 60. For small
values of �, the path integral at the top of the barrier is
non-gaussian due to the curvature becoming extremely
small. At large � the potential seizes to have two vacua;

this happens when the HM result suddenly drops.

false vacuum. In this regime, the decay rate computed
from the HM bounce is not valid; which can be observe
in Figs. 1a and 2. The second region where the saddle-
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mula for the decay rate in a de Sitter space at high Hubble
rates using the Hawking-Moss instanton approximation
including one-loop quantum corrections. We then showed
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sical potential, in the regime where both calculations are
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more commonly used perturbative e↵ective potential is
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with the constraint e↵ective potential can give a non-
perturbative way of computing vacuum decay rates when
the saddle-point approximation, which the Hawking-
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FIG. 1: Comparison of the decay rate for an unbounded potential with a metastable vacuum. We have taken the
potential in Eq. (III.1) with � = � = ⇤6 = 0, H = 10�2

MPl, and �5 = 10�4. For plot (a), the green line corresponds
to Eq. (II.16) and the blue line is computed from the lowest eigenvalue of the Fokker-Planck equation in the

stochastic approach. To the left of the vertical red line the saddle-point approximation breaks. In plot (b), we can
observe that as ↵ increases the discrepancy between the decay rates increases too. This is explained due to the

increase in V
00
top.

approach in the region where both results are applica-
ble. One should note that the HM result is a saddle-
point approximation. This approximation breaks down
when perturbation theory ceases to be valid at either
the top of the barrier or at the false vacuum. The lat-
ter corresponds to the region where �E < T , that is,
when the thermal fluctuations are large. In such region,
we cannot have a metastable state localized in the false
vacuum since the thermal fluctuations are large enough
to destabilize it. Meanwhile the stochastic approach is
not expected to be valid at large field masses due to the
over-damped assumption. Outside of these regimes, both
calculations of the decay rate should agree as long as we
use the constraint e↵ective potential in the stochastic ap-
proach. Namely, our analysis suggests that the stochastic
approach can capture the one-loop corrections if we work
with the constraint e↵ective potential.

III. COMPARISON BETWEEN STOCHASTIC
AND THERMAL APPROACHES

In this section we will compare the results from the
thermal HM decay rate calculation and the stochastic
formalism one. For simplicity, we will consider that the
one-loop constraint e↵ective potential is given by

U(�) =3H2
M

2
Pl

+ µ
3
�� 1

2
m

2
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2 � M
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�
3

+
�
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�
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�6

6!H2
�
6
. (III.1)

In general, the shape of this potential will be given by
a more complicated dependence on � and should include

a renormalization scale µ that arises after renormaliz-
ing the one-loop divergences. Nevertheless, this simple
example is enough for our purposes of comparing the dif-
ferent calculations of the decay rate. We proceed to write
the potential in terms of dimensionless variables. Defin-
ing

↵ =
m

2

H2�1/2
, � =

µ
3

H3�1/4
, � =

M

H�3/4
, ⇤5 =
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�6/4
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1/3
,

(III.2)

the rescaled potential reads

v(z)
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4M2
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. (III.3)

We now analyze the decay rate for three di↵erent cases.
The first one corresponds to a potential unbounded from
below on one side, with a metastable vacuum where
µ = � = �6 = 0. The dimensionless variables ↵, �, and
x are now defined as in Eq.(III.2) with � = 1. The decay
rate for this potential computed both from the thermal
HM and stochastic approaches is shown in Fig. 1a. We
can see that the results agree for large masses which is
the region where the thermal fluctuations are small and
do not destabilize the unstable vacuum. In this region,
the numerical calculation of the eigenvalues becomes dif-
ficult and and analytic expression such as Eq. (II.16) be-
comes useful. At small masses, when the potential bar-
rier becomes increasingly small, we can no longer trust
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ferent calculations of the decay rate. We proceed to write
the potential in terms of dimensionless variables. Defin-
ing

↵ =
m

2

H2�1/2
, � =

µ
3

H3�1/4
, � =

M

H�3/4
, ⇤5 =

�5

�5/4
,

⇤6 =
�6

�6/4
, x = ⌦�1/4 �

H
, ⌦ = 1 +

p
↵+ � + �

1/3
,

(III.2)

the rescaled potential reads

v(z)

⇡2
=
4M2

Pl

H2
+

4�z

3⌦
� 2↵z2

3⌦2
� 2�z3

9⌦3

+
z
4

18⌦4
� ⇤5z

5

90⌦5
� ⇤6z

6

540⌦6
. (III.3)

We now analyze the decay rate for three di↵erent cases.
The first one corresponds to a potential unbounded from
below on one side, with a metastable vacuum where
µ = � = �6 = 0. The dimensionless variables ↵, �, and
x are now defined as in Eq.(III.2) with � = 1. The decay
rate for this potential computed both from the thermal
HM and stochastic approaches is shown in Fig. 1a. We
can see that the results agree for large masses which is
the region where the thermal fluctuations are small and
do not destabilize the unstable vacuum. In this region,
the numerical calculation of the eigenvalues becomes dif-
ficult and and analytic expression such as Eq. (II.16) be-
comes useful. At small masses, when the potential bar-
rier becomes increasingly small, we can no longer trust
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Conclusions

• Phase transitions are a powerful bridge between the early 
Universe and particle physics 

• Early days, many interesting questions to address 

• The order of the EWPT will be probed experimentally and a GW 
signal could be the first ”proof” for the need of physics BSM. 
Light NP? Heavy TeV scale NP? Both will be tackled at colliders 

• Another motivation for BSM can come from inflation. Is the SM 
stable? 

• New methods to perform calculations being developed. 
Combining stochastic and peturbative approaches seems to be 
one way forward!  

• Stay tuned! Many interesting themes in combining early universe 
+ scalars + PTs!


