

Istituto Nazionale di Fisica Nucleare

SIGNATURE FROM PRIMORDIAL BLACK HOLE EVAPORATION ROBERTA GALABRESE

Based on

- PRD 105 (2022) 2, L021302
- PLB 829 (2022) 137050

In collaboration with

M. Chianese, D.F.G. Fiorillo, G. Miele, S. Morisi, A. Palazzo, N. Saviano.

Roberta Calabrese

Roberta Calabrese

PRIMORDIAL BLACK HOLE χ EVAPORATION ħ**c**³ HAWKING TEMPERATURE $8\pi Gk_BM_{PBH}$ S. W. Hawking, CMP 87 (1983) 577 G.W. Gibbons and S. W. Hawking, PRD 15 (1977)

Roberta Calabrese

H. J. Trashen, arXiv gr-qc/0010055 Università degli studi di Napoli "Federico II"

Roberta Calabrese

[Cm²] LZ $\underbrace{10^{-42}}_{10}$ Standard Neutrino Floor $M_{\rm PBH} = 3.0 \cdot 10^{15} \text{g}, f_{\rm PBH} = 1.0 \cdot 10^{-1}$ $M_{\rm PBH} = 1.5 \cdot 10^{15} \text{g}, f_{\rm PBH} = 2.0 \cdot 10^{-3}$ MODIFICATION OF $M_{\rm PBH} = 7.0 \cdot 10^{14} \text{g}, f_{\rm PBH} = 1.3 \cdot 10^{-4}$ FROM PRIMORDIAL BLACK D-nucleon 10^{-46} HOLE EVAPORATION 10^{-48} WIMP dard neutrino floor 10^{-10} 10^{2} 10^{1} WIMP mass [GeV]

-40

 10^{3}

Roberta Calabrese

Università degli studi di Napoli "Federico II"

R. Calabrese et al, PLB 829 (2022) 137050

TOTAL NEUTRINO FLUX FROM PRIMORDIAL BLACK HOLES

R. Calabrese et al, PLB 829 (2022) 137050

BLACKHAWK (Eur. Phys. J.C 81 (2021))
$$\rightarrow \frac{dN}{dt dE_{y}}$$

Neutrino flux from Primordial Black Hole

$$1. \quad \frac{d\phi_{\nu}^{EG}}{dE_{\nu}} = \int dt [1 + z(t)] \frac{f_{PBH}\rho_{DM}}{M_{PBH}} \frac{dN}{dt \, d\widehat{E_{\nu}}} \Big|_{\widetilde{E_{\nu}} = E[1 + z(t)]}$$
$$2. \quad \frac{d\phi^{MW}}{dE_{\nu}} = \int \frac{d\Omega}{4\pi} \frac{dN}{dt \, dE_{\nu}} \int dl \, \frac{f_{PBH}\rho_{NFW}[r(l,\psi)]}{M_{PBH}}$$
$$\frac{d\phi}{dE_{\nu}} \propto f_{PBH} = \frac{\Omega_{PBH}}{\Omega_{DM}}$$

Roberta Calabrese

TOTAL NEUTRINO FLUX FROM PRIMORDIAL BLACK HOLES

R. Calabrese et al, PLB 829 (2022) 137050

Roberta Calabrese

Università degli studi di Napoli "Federico II"

TOTAL NEUTRINO FLUX FROM PRIMORDIAL BLACK HOLES

R. Calabrese et al, PLB 829 (2022) 137050

Roberta Calabrese

Università degli studi di Napoli "Federico II"

GEVNS EVENT RATE IN PARWIN

The event rate from Coherent Neutrino-Nucleus Scattering

Roberta Calabrese

Università degli studi di Napoli "Federico II"

GEVNS EVENT RATE IN PARWIN

The event rate from Coherent Neutrino-Nucleus Scattering

Roberta Calabrese

CE*v***NS EVENT RATE IN** *PARWIN*

Roberta Calabrese

Università degli studi di Napoli "Federico II"

GEVNS EVENT RATE IN PARWIN

Roberta Calabrese

Università degli studi di Napoli "Federico II"

GEVNS EVENT RATE IN *PARWIN*

Roberta Calabrese

Università degli studi di Napoli "Federico II"

CONSTRAINTS ON

PRIMORDIAL BLACK HOLE ABUNDANCE

FORM COHERENT NEUTRINO NUCLEUS ELASTIC SCATTERING

Roberta Calabrese

CONCLUSIONS

 Constraints on Primordial Black Holes abundance from Coherent Neutrino-Nucleus Elastic Scattering
Dark Matter Direct Detection experiments used as Dark Matter Indirect Detection observatories

Roberta Calabrese

CONCLUSIONS

 Constraints on Primordial Black Holes abundance from Coherent Neutrino-Nucleus Elastic Scattering
Dark Matter Direct Detection experiments used as Dark Matter Indirect Detection observatories

THANK YOU FORTHE ATTENTION

HAWKING RADIATION

Vacuum fluctuation: empty space is a medium in which particle and antiparticle pairs appear and disappear

 $E_p + E_{\overline{p}} = 0$

What happens if such fluctuations are near the event horizon?

LIGHTDARK MATTER Emission

Assuming the existence of a light dark matter candidate, χ .

Propagation effect have been taken into account: the energy loss was obtained in the **BALLISTIC**-

TRAJECTORY APPROXIMATION.

Roberta Calabrese

Università degli studi di Napoli "Federico II"

Roberta Calabrese

CONSTRAINTS ON LIGHT PARK MATTER

We obtained constraints on the σ_{χ}^{SI} from the non observation of excess in XENON1T for $E_r \in [4.9 - 40.9]$ keV

(1) CRs up-scatterings

(2) CRESST experiment

(3) Cosmology

Roberta Calabrese

CONSTRAINTS ON PRIMORPIAL BLACK HOLES

Assuming the existence of χ , it is possible to constraint the PBH abundance.

- 1. Valid for any light fermionic DM
- 2. Almost independent of m_{χ}
- 3. Propagation relevant for $\sigma_{\chi}^{SI} \gtrsim 10^{-31} cm^2$

Università degli studi di Napoli "Federico II"

Roberta Calabrese