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Ultra-high energy cosmic rays 

3

Astrophys.Space Sci. 367 (2022) 3, 27

Even the most powerful accelerator reaches only to equivalent energies of  eV1017

Cosmic rays allow to study hadronic interactions at ultra-high energies
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UHECRs from Air Showers

•EAS simula,ons and hadronic interac,on models are the key 
ingredients to study UHECRs 

     Mass composi,on iden,fica,on from the secondary par,cles 

•Considered hadronic interac,on models: 
EPOS-LHC 
QGSJET II-04 
Sibyll (2.3c/d) 
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An air shower is an extensive cascade, with a length of many km, of ionized particles and 
electromagnetic radiation that initiates when a primary cosmic ray (  eV) enters the 
atmosphere. 

E > 1018

The shower is composed of three components:

• The em component characterized by the 
pair production, the bremsstrahlung 
and the ionization energy loss; 

•  The hadronic component produced by 
charged hadronic particles involved in 
the strong interactions with the 
atmosphere; 

•  The muonic component weakly interacts 
and it can be detected at ground using 
SD.

Extensive Air shower

Heavier mass primaries induce showers with larger 
hadronic component and therefore more muons 

Electromagnetic component remains ~ the same

5
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Extensive Air shower

• Longitudinal development 

     > Number of particles as a function of the depth  

     > Larger number of particles at  

• The lateral distribution function; 

     > Particle density at ground wrt distance to shower axis 
     > Muons, electrons or mixture 

X

Xmax

• At a depth  the number of particles in the shower is . 

At the shower maximum we define: 

• ;  

•   

A nucleus with mass A and energy   is considered as A independent nucleons 
with energy  each. 

1)   

2)

X N(X ) = 2n = 2
X

λem

Nmax = E0 /Ec

Xmax = X0 + λemlog2(E0 /Ec)

E0
E0 /A

Xmax ∝ λ
E0

AEc

NA
μ (Xmax) = A( E0 /A

Edec )
α

= A1−αNp
μ(Xmax)
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The Observatory
Located in the southern hemisphere is the largest air shower detector built so far

For reconstruc=ng showers more reliably at ~ eV1017

7
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Hybrid Detection

AugerObservatory Phase I

The Pierre Auger Observatory has been designed to investigate the highest energy cosmic rays with energy exceeding 
eV, combining a surface array of particle detectors with fluorescence telescopes for hybrid detection1019

The SDs measure photons and charged particles at ground level 

The FDs observe longitudinal development of air showers in the atmosphere 

The RDs complement this setup studying radio emission from air showers

Calibration of the SD risetime with  distributions measured with the FDXmax

8
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•Depth of the shower maximum; 

•Cross sec,on measurement ; 

•Muon measurement with highly inclined showers; 

•Direct measurement with buried muon counters;  

•Fluctua,ons in the number of muons; 

Probing hadronic interactions…

9

Self-consistency tests of the post-LHC hadronic models using measurements of the depth of 
the shower maximum and the main features of the muon component at the ground.

Fluorescence Detection

Hybrid Detection

Surface Detection
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The Pierre Auger Collaboration, Phys.Rev,D90(2014) 122005
J. Bellido (Auger Coll.) PoS (ICRC2017) 506
The Pierre Auger Collaboration, EPJ Web of Conferences 208, 08001 (2019). 

Depth of shower maximum 

10
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Cross Section Measurements

The Pierre Auger Collaboration, Phys.Rev,Lett. 109 (2012) 062002 
R. Ulrich (Auger Coll.) PoS (ICRC2015) 401

Measured  related to the cross sectionΛη

Energy Ranges
LAB 


log(E /eV) = 17.8 − 18
log(E /eV) = 18 − 18.5

CMS pp 

38.7 TeV

55.5 TeV

20% most deeply penetrating showers 
(proton fraction the data set enhanced)
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Muon measurement with highly inclined showers

Zenith angles 62°-80°

The Pierre Auger Collaboration, Phys.Rev,D. 91 (2015) 032003



C. TRIMARELLI

INTRODUCTION
The Observatory

Mass Composition
Cross Sections

CONCLUSIONS
   Muon Measurement

13

Muon measurement with highly inclined showers

The Pierre Auger Collaboration, Phys.Rev,D. 91 (2015) 032003

Disagreement quantified using the 
mass composition inferred from Xmax
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Measurement of the fluctuation in the number of muons

The Pierre Auger Collaboration, Phys.Rev,Lett. 126 (2021) 152002

 —>   

the fluctuations are mostly dominated by the first interaction!

⟨Nμ(E )⟩ = mg = CEβ σ (mi) =
σ (m)

Ni−1
The necessary increases in the average number of muons to 
reconcile the simulated values with the measurement vary 
from 26% to 43%

Fluctuations in the number of muons between showers

An agreement between models and data for the fluctuations and a 
significant deficit in the total number of muons are observed!
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Measurement of the fluctuation in the number of muons

The Pierre Auger Collaboration, Phys.Rev,Lett. 126 (2021) 152002
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Direct measurement above 1017.5

F. Sanchez (Auger Coll.) PoS (ICRC2019) 411
The Pierre Auger Collaboration, Eur.Phys.J. C80 (2020) 751
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Measurement of the number of muons

F. Sanchez (Auger Coll.) PoS (ICRC2019) 411
The Pierre Auger Collaboration, Eur.Phys.J. C80 (2020) 751
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Further works

- Hybrid muon measurement 

- Muon Production depth 
 
 

- Measurement with risetime 

The Pierre Auger Collaboration, Phys.Rev.Lett. 117 (2016) 192001

The Pierre Auger Collaboration, Phys.Rev.D. 90 (2014) 012012
M. Mallamaci (Auger Coll.) PoS (ICRC2017) 509

The Pierre Auger Collaboration, Phys.Rev.D. 96 (2017) 122003
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Conclusions and Future Prospects
The Pierre Auger observatory hybrid detection allow to measure the electromagnetic  
and hadronic components of air showers

• Adjustments to the predic,ons of  and the hadronic signal at the ground 
 
 
 

• Lorentz Invariance Viola,on model?  

Xmax

J. Vicha (Auger Coll.) PoS (ICRC2021) 310

C. Trimarelli (Auger Coll.) PoS (ICRC2021) 340

- The number of muons is not well reproduced ;

- Fluctuations in the number of muons within the range predicted by the current hadronic 
interaction models;

- Proton-air cross section measurement using  distributions;Xmax

Improvements given by the upgrade of the Observatory detection system AugerPrime (See F. Sanchez talk)



Thanks for your attention!
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Upgrade of the Pierre Auger Observatory
 AugerPrime

Physics motivation 
• Composition measurement up to  eV

• Composition selected anisotropy

• Particle Physics with air showers (muon estimate)

• Much better understanding of new and old data

1020
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to discriminate e.m. and muonic components

Moreover 
- Upgraded and faster electronics 
- Extension of the dynamic range  
- Cross check with underground 
buried AMIGA detectors 
- Extension of the FD duty cycle

Upgrade of the Pierre Auger Observatory: 
AugerPrime
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The Observatory
Located in the southern hemisphere is the largest air shower detector built so far

For reconstruc=ng showers more reliably at ~ eV1017

Plastic Tank 
with 12 tons 

3 photomultipliers

Battery

Electronics

Solar Panels

GPS Antenna

Communications 
Antenna

Telescope buildingLidar
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o  distributions fitted with 
four-mass Gumbel function 
from LHC-tuned interaction 
models. 

o Fit quality not always good  
(QGSJet worse). 

o Large proton fractions below 
the ankle. 

o Iron almost absent.

Xmax

Measured considering the atmospheric depth at which the number of particles in an air shower reaches its maximum

< Xmax > ∝ lg(E/A)
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Mass composition @ Earth (top of the atmosphere)

o Xmax distributions fitted with 
four-mass CONEX showers 
from LHC-tuned interaction 
models. 

o Fit quality not always good  
(QGSJet worse). 

o Large proton fractions below 
the ankle. 

o Iron almost absent.
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• At a depth  the number of particles in the shower is . 

At the shower maximum we define: 

• ;  

•   

A nucleus with mass A and energy   is considered as A independent nucleons with energy  each. 

The superposition of the individual nucleon showers yields:  

1)   

2)     

X N(X ) = 2n = 2
X

λem

Nmax = E0 /Ec

Xmax = X0 + λemlog2(E0 /Ec)

E0 E0 /A

Xmax ∝ λ
E0

AEc

NA
μ (Xmax) = A( E0 /A

Edec )
α

= A1−αNp
μ(Xmax)

E0

E0/2

E0/4

E0

E0

nsec
λ

λem

X X

Heitler Model
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