7/06/2022, Bologna ICHEP 2022

Gravitational-wave cosmology with dark sirens: state of the art and perspectives for 3G detectors

Michele Mancarella

Université de Genève & Gravitational Wave Science Center

Michele.Mancarella@unige.ch

COSMOLOGY WITH GWs

- Expected for small fraction of sources (BNS); only 1.5/90 so far
- ▶ More difficult to detect at high redshift, needed to test gravity (e.g. GW170817 dos not constrain Ξ_0).
- Depend on EM experiments. GW170817 not likely to repeat soon. Other methods with GWs alone?

COSMOLOGY WITH DARK SIRENS

"Population priors" add statistical information on the redshift.
 Methods applied to GWTC-3:

Statistically associate a host from a galaxy catalog using galaxies in the GW localization region
Schutz 1986

- GW side: good localization needed
- Catalog incompleteness is the main limiting factor
- Features in the BBH mass distribution break mass-redshift degeneracy $m_i^D = m_i \times (1 + z)$ Farr, Fishbach, Ye, Holz

• PISN process imprints mass scale

- \blacklozenge Effect of Ξ_0 cumulates with redshift changes shape of reconstructed merger rate evolution
- + many other methods proposed for 2-3G detectors
- Require to model population and cosmology together (selection bias)
- 2 independent pipelines:

https://github.com/CosmoStatGW/

1908.09084

COSMOLOGY WITH GWTC3: SUMMARY

• i) GWTC3 + BBH mass distribution

PRD 105 (2022) 6 + code MGCosmoPop see also icarogw, Mastrogiovanni et al 2021; Leyde et al 2202.00025, LVK 2111.03604

• ii) GWTC3 + galaxy catalog

JCAP 08 (2021) 026 + code DarkSirensStat Proceedings Moriond 2022, 2203.09238 see also gwcosmo Gray et al 2019-2022

- * Joint cosmo+population inference. Mass scale around 35-40 solar masses detected and marginalized
- ***** Best bound on Ξ_0
- * Corrected for incompleteness of the galaxy catalog
- * Selection effects: select GW events in complete regions
- * Population fixed at best fit from step i), systematic uncertainty in grey

PERSPECTIVES

• Next generation: high precision measurements for a large number of sources (not the case for 2G).

• Scalable, fast and reliable forecast tools needed NOW for the science cases

gwbench - Borhanian 2020 gwfish - Harms + 2022 gwfast - Iacovelli + 2022

• GWFAST: <u>a Fisher forecast code for 3G detectors</u> <u>https://github.com/CosmoStatGW/gwfast</u>

- ▶ Fast, scalable, parallelizable automatic differentiation in jax
- Vectorized LAL waveforms in python
- Includes rotation of the Earth

on the arXiv today !

with Iacovelli, Foffa, Maggiore

LOCALIZATION AT 2G AND 3G FORECASTED WITH GWFAST

• **BNS**: O(10^5-10^6)/year. Can stay in the detection band for long time - rotation of the Earth improves localization

	BNS									
	Network	Detected	Analysed	$ $ SNR ≥ 30	$\left \Delta d_L/d_L \le 10\% \right $	$\left \ \Delta \Omega_{90\%} \leq 100 \mathrm{deg}^2 \ \right $				
	LVK–O4	4	3	0	1	1				
\rightarrow	ET	9577	7532	770	9	29				
	ET+2CE	40107	35029	5289	1678	27704				

CONCLUSIONS

- O 2018-2021. First applications of statistical methods to modified GW propagation (+Hubble). No deviations from GR (but nothing conclusive). Independent codes.
- O 2018-2021. Challenges: interplay with astrophysics, computational cost. Turn systematics into statistical uncertainty.
- <u>Next generation</u>: Different sources available with large rates. Precision GW cosmology. Need adequate statistical analysis tools (accurate, scalable, fast), both for forecasts and analysis
- OGWs=unique distance tracers. New cornerstone of precision cosmology.

https://github.com/CosmoStatGW/

SUPPLEMENTARY SLIDES

INFORMATION FROM A GALAXY CATALOG

- Statistically associate potential host to all galaxies in the localization region *Schutz 1986*
 - GW side: good localization needed
 - Catalog incompleteness is the main limiting factor
 - Knowledge of astrophysics BBH population used in evaluating selection effects
 - GW+galaxy catalog code including modified GW propagation:
 - * Completeness: include angular dependence
 - * Selection effects: include possibility of selecting GW events in complete regions

https://github.com/CosmoStatGW/ DarkSirensStat

Finke, Foffa, Iacovelli, Maggiore, MM 2101.12660

see also gwcosmo Gray et al 2019-2022

INFORMATION FROM BBH MASS DISTRIBUTION

• Use information on the **source frame mass:** features in the mass distribution

$$\begin{split} m_i^D &= m_i \times (1+z) \\ d_L^{\rm GW}(z; \boldsymbol{H_0}, \boldsymbol{\Xi_0}, \ldots) \end{split}$$

 $m_{i} = \frac{m_{i}^{D}}{1 + z \left(d_{L}; \frac{H_{0}}{2}, \Xi_{0}, \ldots \right)}$ $p(m_1)$ Pair Instability SuperNova (PISN) process imprints a mass scale Expected, obs. ···· Expected, true Joint population and cosmological inference • Effect of Ξ_0 cumulates with redshift -10<SNR<12 changes shape of reconstructed merger 0.8 SNR>12 rate evolution/shifts mass scale differently 0.0 P.0 P.0 $z(d_L; H_0, \Xi_0, ...)$ \bullet Hierarchical bayesian inference code including modified GW propagation: 0.2 https://github.com/CosmoStatGW/ **MGCosmoPop** z)d0.0 100 120 40 20 60 80 PRD 105 (2022) 6 with Genoud-Prachex, Maggiore Primary mass $m_1[M_{\odot}]$

see also icarogw, Mastrogiovanni et al 2021

Farr, Fishbach, Ye, Holz 1908.09084

COSMOLOGY WITH GWTC3 (I)

PRD 105 (2022) 6 with Genoud-Prachex, Maggiore + code MGCosmoPop

• Always 2 separate cases: (i) Ξ_0 fixing H_0 , (ii) H_0 fixing $\Xi_0 = I$ (GR)

• Step 1: GWs + population model

 35 events with SNR>12 (robust to inclusion/ exclusion of GW190521)

- Constraint driven by mass scale
- Large effect on reconstruction of merger rate

see also Leyde et al 2202.00025 , LVK 2111.03604

• "Broken power law" mass distribution
• Madau-Dickinson rate
$$p(z)$$

 $R(z) \propto (1+z)^{\gamma}$

COSMOLOGY WITH GWTC3 (II)

JCAP 08 (2021) 026 with Finke, Foffa, Iacovelli, Maggiore+ code DarkSirensStat Proceedings of Moriond 2022, 2203.09238

• Always 2 separate cases: (i) Ξ_0 fixing H_0 , (ii) H_0 fixing $\Xi_0 = I$ (GR)

• Step 2: GWs + galaxy catalog

- GLADE+ catalog, K-band luminosity weights, only events with position at 100% completeness
- Only one parameter free, otherwise too computationally expensive
- Selection effects: use population model as determined by step 1, <u>uncertainty</u> <u>treated as systematic</u> (gray band)
- Counterpart dominates constraint on H_0 , useless for Ξ_0 (too low redshift)

(ask me later for an interesting story about a second candidate counterpart and modified GW propagation...)

 $H_0 = 67^{+9}_{-6} \,\mathrm{Km \, s^{-1} \, Mpc^{-1}}$

see also LVK 2111.03604

COSMOLOGY WITH THE BNS MASS FUNCTION

Wednesday 6 July 22

OTHER METHODS

• Many other methods proposed

- ◆ Tidal effects in NS Messenger, Read 2011
- Clustering information
 Mukherjee et al, 2019, (applied in Mukherjee et al, 2022)
- Spin-induced precession in NS-BH Vitale & Chen 2018
- ◆ Rate evolution Fishbach et al, 2021
- Strong lensing Hannuksela et al. 2019; Finke, Foffa, Iacovelli, Maggiore, MM 2021
- BNS mass distribution Taylor, Gair, Mandel 2011; Finke, Foffa, Iacovelli, Maggiore, MM 2021
- Fraction of AGN flares Palmese et al 2021

O Combination of techniques? E.g. use full mass spectrum (BNS+BBH) Ezquiaga & Holz 2022

• Don't forget <u>counterparts</u>. BUT: difficult to forecast detection rates; depend crucially on status of EM experiments. More challenging for testing gravity. Detection rates of dark sirens so high that they could be as significant as bright sirens.

see Ronchini + 2204.01746 for extensive updated study

STRONGLY LENSED EVENTS: STANDARD SIRENS WITHOUT COUNTERPARTS

The second for a second of the second of the

PRD 104 (2021) 8, 084057 with Finke, Foffa, Iacovelli, Maggiore

• Quadruply lensed GW events allow reconstruction of source-lens system

Hannuksela et at 2004.13811

Can test GR (with only one good event !)...

- Can localize GW source to a few galaxies with EM follow-up...
- ..but this is also a standard siren giving <u>1+4</u>
 <u>distance estimates at the same time:</u>
 - * time delays give EM luminosity distance
 - * GW images give GW luminosity distance

... without external prior on $H_{\rm 0}$

SELECTION BIAS - AN ILLUSTRATION

$p(\Lambda | \mathcal{D}_{GW}) \propto \pi(\Lambda) N_{det}(\Lambda)^{N_{obs}} e^{-N_{det}(\Lambda)} \prod_{i=1}^{N_{obs}} \frac{\int d\theta_i \mathcal{L}(\mathcal{D}_{GW} | \theta_i) p_{pop}(\theta | \Lambda)}{\beta(\Lambda)}$

• Physical meaning: $\beta(\Lambda)$ = fraction of expected events detected at given Λ

Mandel, Farr, Gair '19

• Evaluation:

- ***** generate mock events from *reference population* (source mass+redshift distribution)
- check how many events are detected by the experiment (SNR>8)
- compute fraction of detected events

• Need to know population or infer it simultaneously

FORECASTS FOR O5

amond to al

PRD 105 (2022) 6 with Genoud-Prachex, Maggiore

TELES BALLAND A TOT DO TO THE OCCUPYON

DETECTION RATES

The second for a second of the second of the

• CMB, BAO are distance scales. When changing w₀, the other parameters change so to keep those fixed. This fixes EM luminosity distance.

• GW luminosity distance is additionally changed by Ξ_{0} . This becomes the dominant term

COSMOLOGY WITH GWs: MODIFIED GW PROPAGATION

COSMOLOGY WITH GWs: $(\Xi_{0,n})$ PARAMETRIZATION

Ling and State manufacture of the states and

• General strategy to constrain the dark sector: parametrize deviations from GR

	BASE PARAMETERS		$(H_0, \Omega_{\mathrm{M}}, \ldots)$	CMB+BAO+SN	9				
-	BACKGROUND	Weird pressure	(w_0, w_a)	CMB+BAO+SN	2				
	SCALAR	 Effective Newton`s constant Effective anisotropic stress 	$G_{ ext{eff}}(t,k) \ \eta(t,k)$	LSS WL					
	TENSOR	Modified GW propagation	(Ξ_0, n)	GWs					
elgaco 7 2.0	$h_{A}^{\prime\prime} + [2 + \alpha_{M}(\eta)]\mathcal{H}h_{A}^{\prime} + c^{2}k^{2}h_{A} = 0 \qquad h_{A} \propto \frac{1}{d_{L}^{GW}}$ $d_{L}^{GW}(z) = d_{L}^{em}(z) \exp\left\{\frac{1}{2}\int_{0}^{z}\frac{dz^{\prime}}{1+z^{\prime}}\alpha_{M}(z^{\prime})\right\} \qquad h_{A} \propto \frac{1}{d_{L}^{GW}}$ $l_{acem, Dirian, Foffa, Maggiore}$ $\frac{d_{L}^{gw}(z)}{d_{L}^{gw}(z)} = \Xi_{0} + \frac{1-\Xi_{0}}{d_{L}^{gw}(z)} \qquad GW-\text{analog of } (w_{0}, w_{a})$								
906.0	01593	$\overline{d_L^{\mathrm{em}}(z)} = \Box_0$	$(1+z)^n$		Dominant effect, measured much better than (w_0, w_a)				

B

B