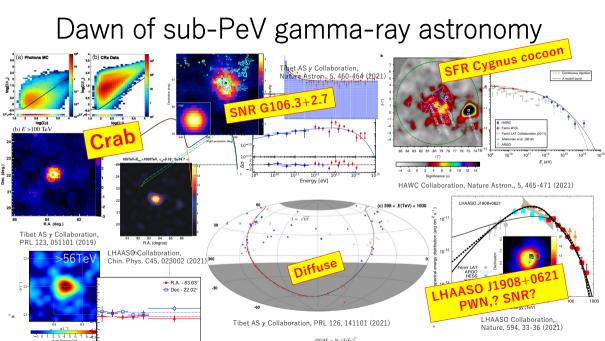
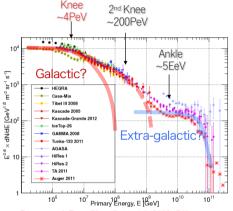
ALPACA experiment:

A new air shower array to explore the sub-PeV gamma-ray sky in the southern hemisphere


Takashi Sako (ICRR, the University of Tokyo) for the ALPACA Collaboration

The ALPACA Collaboration



T. Sako ^A, M. Anzorena ^A, C. A. H. Condori ^c, E. de la Fuente ^D, A. Gomi ^E, Y. Hayashi ^B, K. Hibino ^F, N. Hotta ^G, A. Jimenez-Meza ^D, Y. Katayose ^E, C. Kato ^B, S. Kato ^A, I. Kawahara ^E, T. Kawashima ^A, K. Kawata ^A, T. Koi ^H, H. Kojima ^I, D. Kurashige ^E, R. Mayta ^{J,K}, P. Miranda ^C, K. Munakata ^B, K. Nagaya ^E, Y. Nakamura ^A, C. Nina ^c, M. Nishizawa ^M, R. Noguchi ^E, S. Ogio ^A, M. Ohnishi ^A, S. Okukawa ^E, A. Oshima ^H, M. Raljevich ^c, H. Rivera ^c, T. Saito ^N, Y. Sakakibara ^E, T. K. Sako ^A, T. Sasaki ^F, S. Shibata ^I, A. Shiomi ^L, M. Subieta ^c, N. Tajima ^o, W. Takano ^F, M. Takita ^A, Y. Tameda ^P, K. Tanaka ^Q, R. Ticona ^c, I. Toledano-Juarez ^D, H. Tsuchiya ^R, Y. Tsunesada ^{J,K}, S. Udo ^F, K. Yamazaki ^H, Y. Yokoe ^A et al. (The ALPACA Collaboration)

ICRR, Univ. of Tokyo A, Dept. of Phys., Shinshu Univ.⁸, IIF, UMSA C, Univ. de Guadalajara D, Fac. of Engn., Yokohama Natl. Univ.^E, Fac. of Engn., Kanagawa Univ.^F, Utsunomiya Univ.^G, Coll. of Engn., Chubu Univ.^H, Astro. Obs., Chubu Univ.^I, Grad. Sch. of Sci., Osaka Metro. Univ.^J, NITEP, Osaka Metro. Univ.^K, Coll. of Ind. Tech., Nihon Univ.^L, NII^M, Tokyo Metro. Coll. of Ind. Tech.^N, RIKEN O, Fac. of Engn., Osaka Electro-Comm. Univ.^P, Fac. of Info. Sci., Hiroshima City Univ.^Q, JAEA R

Why sub-PeV gamma rays?

Gaisser et al. Front. Phys. (Beijing) 8 (2013) 748

- Galactic protons are thought to be accelerated up to PeV (~knee)
 - Where are their origins?
 - Are CRs up to 100PeV (~2nd knee) heavy nuclei?
- Sub-PeV gamma rays point to the sources of PeV CRs $p(E) + ISM \rightarrow X + \pi^0 \rightarrow X + 2\gamma(\sim 0.1E)$
- Diffuse gamma rays tell us the CR distribution in the galaxy.
- Highest energy gamma rays tell us the acceleration limit in energy/nucleon.

Especially in the

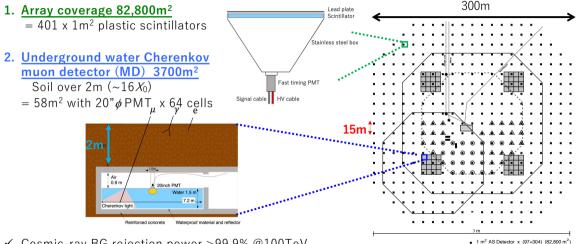
southern hemisphere,

near the Galactic center!!

Where are the CR sources? What is the maximum acceleration energy (/nucleon)? How do they propagate in the galaxy?

ALPACA

(<u>Andes Large area PA</u>rticle detector for <u>Cosmic ray physics and A</u>stronomy) Mt. Chacaltaya, Bolivia

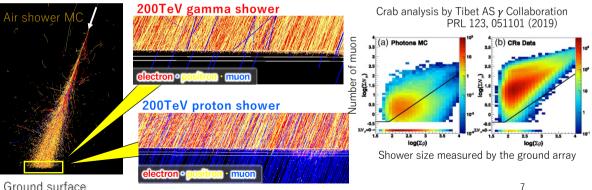

UMSA CR Observatory 5200 m a.s.l.

La Paz

ALPACA site 4740 m a.s.l.

4,740 m above sea level (16°23´S, 68°08´W)

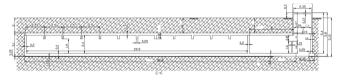
ALPACA Array

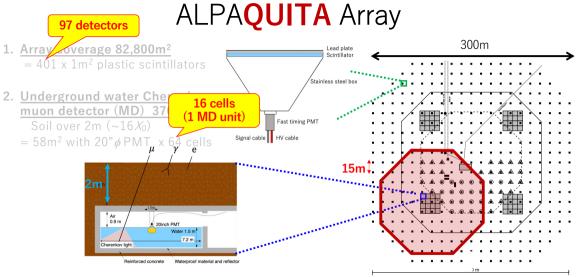


- ✓ Cosmic-ray BG rejection power >99.9% @100TeV.
- ✓ Angular resolution ~0.2° @100TeV, Energy resolution ~20%@100TeV
- ✓ 100% duty cycle, FOV θ_{zen} <40° (well studied), θ_{zen} <60° (in study)

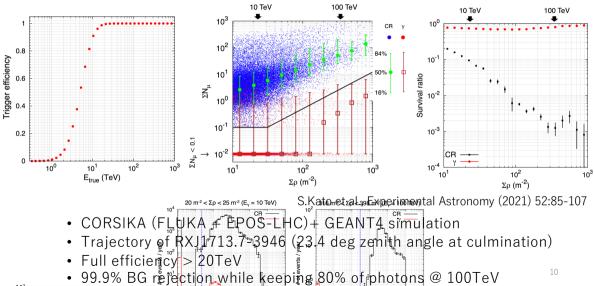
58 m² Muon Detector x (16+48) (3 700 m²)

Particle ID


- BG is enormous hadronic CR showers •
- Number of penetrating muons 2m underground is used for hadronic/EM shower ٠ separation
- Technic is established by the Tibet AS γ Collaboration •


Underground Muon Detector (MD)

Site photo + CG image of MD by design company

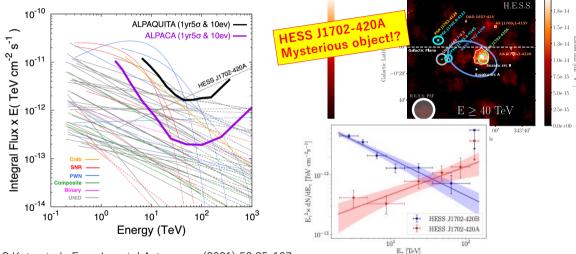

- Total 4 units, each composes of 16 cells of 7.5mx7.5m.
- 2m soil overburden allows >1GeV muon penetration.
- Design finalizing with Bolivian construction design company.
- Construction of first MD in this fiscal year.

- ✓ Cosmic-ray BG rejection power >99.9% @100TeV.
- ✓ Angular resolution ~0.2° @100TeV, Energy resolution ~20%@100TeV
- ✓ 100% duty cycle, FOV θ_{zen} <40° (well studied), θ_{zen} <60° (in study)

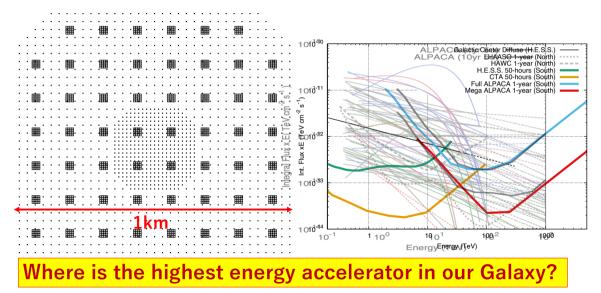
1 m² AS Detector x (97+304) (82,800 m²)
 58 m² Muon Detector x (16+48) (3.700 m²)

ALPAQUITA Performance

ALPAQUITA construction in June 2022



- Construction resumed in June 2022.
- Installation of 97 ground detectors completed.
- HV ON/calibration/DAQ start in Aug.-Sep., 2022. $^{\mbox{ 11}}$


ALPAQUITA sensitivity

S.Kato et al., Experimental Astronomy (2021) 52:85-107

HESS Collaboration, A&A 653, A152 (2021)2

Beyond PeV – Mega (m²) ALPACA

Summary

- Sub-PeV gamma-ray astronomy opened a new window to reveal the highest energy CR accelerators in the Galaxy
 - Successful experiments in the northern hemisphere
 - Southern sky is yet unexplored

ALPACA is a new air shower array constructed in Bolivia

- First sub-PeV observation in the southern hemisphere
- Underground MD technic established by the Tibet AS γ collaboration

Observation will start soon

- Observation with 97 ground detectors, ALPAQUITA, will start soon
- Construction of first MD will start in this fiscal year
- Extension to 401 ground detectors + 4 MDs (full ALPACA) follows in 2023-2024
- Idea of Mega ALPACA to reach PeV is proposed

Summary

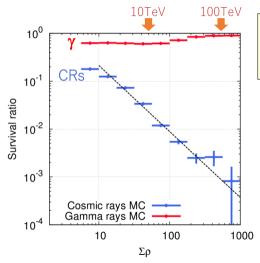
- Sub-PeV gamma-ray astronomy opened a new window to reveal the highest energy CR accelerators in the Galaxy
 - Successful experiments in the northern hemisphere
- ALPACA is a new air shower are
- First sub-PeV observetion
 Undergrouped tor ICRC2023 in Japan!
 Undergrouped tor ICRC2023 in Japan!
 Bapan!
 Bapan!</
- · Obse Ctal
 - Obs and with 97 ground detectors, ALPAQUITA, will start soon
 - Construction of first MD will start in this fiscal year
 - Extension to 401 ground detectors + 4 MDs (full ALPACA) follows in 2023-2024
 - Idea of Mega ALPACA to reach PeV is proposed

The Astroparticle Physics Conference

Nagoya, Japan, Jul 26-Aug 3, 2023

icrc2023.org

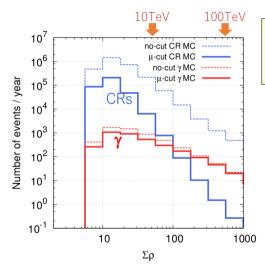
11 11 11


11

11 11

11

Backup


Survival Ratio After Muon Cut

ALPACA full MC simulation (AS 83000m² + MD 5400m²) Muon cut is optimized assuming Crab-like source

- ✓ Cosmic rays will be rejected by ~99.9% @100TeV
- ✓ Gamma rays will be retained over 90%
 @100TeV

of Events Before/After Muon Cut

ALPACA full MC simulation (AS 83000m² + MD 5400m²) Muon cut is optimized assuming Crab-like source

- ✓ # of cosmic rays ~1 /year >100TeV
- ✓ # of gamma rays ~50 /year >100TeV