

# ATLAS Measurements of CP-Violation and Rare Decays Processes with Beauty Mesons

Pavel Řezníček for the ATLAS Collaboration  $7^{\rm th}$  July 2022



# **B-Physics at ATLAS**

- ATLAS Run 2: 139 fb<sup>-1</sup> of pp collisions at  $\sqrt{s} = 13$  TeV collected in 2015-2018
- Producing 2.5 M  $b\bar{b}$  pairs/second,  $B_s$ ,  $B_c$ ,  $\Lambda_b$ , etc. available
- Program focused mostly on muonic final states, fully reconstructable
- Typical trigger: low-p<sub>T</sub> di-muons at low invariant mass, using information from tracker and muon detectors
- $\bullet\,$  B-physics trigger rate up to  $\sim 200\,\text{Hz}$



# **B-Physics at ATLAS**

- ATLAS Run 2: 139 fb<sup>-1</sup> of pp collisions at  $\sqrt{s} = 13$  TeV collected in 2015-2018
- Producing 2.5 M  $b\bar{b}$  pairs/second,  $B_s$ ,  $B_c$ ,  $\Lambda_b$ , etc. available
- Program focused mostly on muonic final states, fully reconstructable
- Typical trigger: low-p<sub>T</sub> di-muons at low invariant mass, using information from tracker and muon detectors
- + B-physics trigger rate up to  $\sim 200\,\text{Hz}$



# Measurement of the CP-violating phase $\phi_s$ in $B^0_s \to J/\psi \phi$ decays in ATLAS at 13 TeV

Eur. Phys. J. C 81 (2021) 342

# CPV in $B_s^0 \rightarrow J/\psi \phi$ and the measurement

• Interference of direct decay and decay with mixing into the same final state of  $B_s^0 \rightarrow J/\psi\phi$  gives rise to time-dependent *CP* violation



- In the Standard Model (SM) the  $\phi_s$  is small:  $\phi_s\simeq -2\beta_s=-0.03696^{+0.00072}_{-0.00082}$  rad
- New Physics (NP) could contributed to the mixing box diagrams, potentially enlarging  $\phi_s$
- Whole system described by:
  - weak phase  $\phi_{s}$  and direct- CPV parameter  $\lambda$
  - CP-state amplitudes (and their phases)
  - the mixing parameters  $\Delta m_s, \ \Delta \Gamma_s, \ \Gamma_s$

### Measurement

- Final state: admixture of *CP*-odd (*L* = 1) and *CP*-even (*L* = 0, 2) states
- Distinguishable through time-dependent angular analysis:  $\frac{d^4\Gamma}{dt \ d\Omega} = \sum_{k=1}^{10} \mathcal{O}^{(k)}(t)g^{(k)}(\theta_T, \psi_T, \phi_T)$
- Analyzing signal final state  $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$
- S-wave decay  $B^0_s\to J/\psi K^+K^-$  contribution included in the differential decay rate



# **Opposite-side** flavour tagging

- Use  $b \bar{b}$  correlation  $\implies$  initial  $B_s^0$  flavour
  - $b(ar{b}) 
    ightarrow I^{-(+)}$  transition
  - diluted by oscillations and b 
    ightarrow c 
    ightarrow l
- Key variables: charge of *p*<sub>T</sub>-weighted tracks in cone Δ*R*(φ, η) around the opposite side lepton

$$Q_{\mathrm{x}} = rac{\sum_{i}^{N \mathrm{\ tracks}} q_{i} \cdot (p_{\mathrm{T}i})^{\kappa}}{\sum_{i}^{N \mathrm{\ tracks}} (p_{\mathrm{T}i})^{\kappa}}$$

• Building per-candidate tag probability P(B|Q)

### Four taggers

- Muon: tight-ID or low- $p_T$ ,  $\kappa = 1.1, \ \Delta R = 0.5$
- Electron:  $p_{\rm T}(e) > 0.5 \,{\rm GeV},$  $\kappa = 1.0, \, \Delta R = 0.5$
- Jet: *b*-tagged jets,  $\kappa = 1.1$ ,  $\Delta R = 0.5$
- Search order based on best purity

• Calibrated on self-tagged  $B^{\pm} \rightarrow J/\psi K^{\pm}$  data



**Tagging performance**  $\epsilon_x = \text{tag efficiency}, D = 1 - 2 \times \text{wrong-tag fraction}, T_x = \epsilon_x D^2 = \text{tagging power}$ 



 $B_{\circ}$ 

Bud .

### Unbinned maximum likelihood fit

• An unbinned maximum likelihood (UML) fit performed in 10 D space

 $\ln \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_{\mathrm{s}}\mathcal{F}_{\mathrm{s}} + f_{\mathrm{s}}f_{B^0}\mathcal{F}_{B^0} + f_{\mathrm{s}}f_{\Lambda_b}\mathcal{F}_{\Lambda_b} + (1 - f_{\mathrm{s}}(1 + f_{B^0} + f_{\Lambda_b}))\mathcal{F}_{\mathrm{bkg}}) \}$ 

Observables

 $\begin{aligned} \mathcal{F}_{x}(m_{i},t_{i},\sigma_{m_{i}},\sigma_{t_{i}}(p_{\mathrm{T}_{i}}),\\ \theta_{T},\psi_{T},\phi_{T},P(B|Q_{i})) \end{aligned}$ 

- Base  $B_s^0$  decay observables: mass, time, angles
  - Conditional observables: per-candidate tagging  $Q_x$  and mass/time resolutions ( $p_T(B)$  dependent)
- Full time-angular PDF including S-wave
- Fixed parameters:  $\Delta m_s =$  PDG, direct CP  $\lambda = 1$
- Trigger causing decay time inefficiency, modeled in MC



### Results

| Parameter                                  | Value  | Statistical | Systematic  |  |
|--------------------------------------------|--------|-------------|-------------|--|
|                                            |        | uncertainty | uncertainty |  |
| $\phi_s$ [rad]                             | -0.081 | 0.041       | 0.022       |  |
| $\Delta \Gamma_s \text{ [ps}^{-1}\text{]}$ | 0.0607 | 0.0047      | 0.0043      |  |
| $\Gamma_s  [\mathrm{ps}^{-1}]$             | 0.6687 | 0.0015      | 0.0022      |  |
| $ A_{\parallel}(0) ^2$                     | 0.2213 | 0.0019      | 0.0023      |  |
| $ A_0(0) ^2$                               | 0.5131 | 0.0013      | 0.0038      |  |
| $ A_{S}(0) ^{2}$                           | 0.0321 | 0.0033      | 0.0046      |  |
| $\delta_{\perp} - \delta_S$ [rad]          | -0.25  | 0.05        | 0.04        |  |
| Solution (a)                               |        |             |             |  |
| $\delta_{\perp}$ [rad]                     | 3.12   | 0.11        | 0.06        |  |
| $\delta_{\parallel}$ [rad]                 | 3.35   | 0.05        | 0.09        |  |
| Solution (b)                               |        |             |             |  |
| $\delta_{\perp}$ [rad]                     | 2.91   | 0.11        | 0.06        |  |
| $\delta_{\parallel}$ [rad]                 | 2.94   | 0.05        | 0.09        |  |



- Almost 500 k signal candidates
- Weak phase  $\phi_s$  as well as decay width difference  $\Delta\Gamma_s$  compatible with Standard Model
- Dominant systematics on  $\phi_s$  measurement from tagging
  - Accounting for pile-up dependence, calibration curves model and MC precision, "Punzi" PDFs variations, difference between  $B^{\pm}$  and  $B_s^0$  kinematics

### Results

| Parameter | Value | Statistical<br>uncertainty | Systematic uncertainty |
|-----------|-------|----------------------------|------------------------|
| ( F 13    | 0.001 | 0.041                      | 0.000                  |

### • Statistical (BLUE) combination

#### **Comparison with other experiments**



• Accounting for pile-up dependence, calibration curves model and MC precision, "Punzi" PDFs variations, difference between  $B^{\pm}$  and  $B_s^0$  kinematics

# Study of the rare decays of $B_s^0$ and $B^0$ mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector

JHEP 04 (2019) 098

# Analysis of rare $B^0_{(s)} ightarrow \mu \mu$ decays

- FCNC in the SM proceeding via loop and box diagrams, and helicity suppressed  $\implies \mathcal{B} \sim 10^{-9}$
- BSM can significantly contribute, modifying the branching ratio

#### Measurement

$$\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-) = N_{d(s)} \cdot \frac{\mathcal{B}(B^{\pm} \to J/\psi K^{\pm}) \cdot \mathcal{B}(J/\psi \to \mu^+ \mu^-)}{N_{J/\psi K^{\pm}} \cdot \frac{\epsilon_{\mu^+ \mu^-}}{\epsilon_{J/\psi K^{\pm}}}} \cdot \frac{f_u}{f_{d(s)}}$$

- $\mathcal{B}(B^0_{(s)} \to \mu\mu)$  measurement relative to  $\mathcal{B}(B^{\pm} \to J/\psi K^{\pm})$ ,  $B^0_s \to J/\psi \phi$  as control channel
- Blinded signal di-muon invariant mass region
- BDT based background suppresion, trained on sidebands data
- Yields  $N_{d(s)}$  and  $N_{J/\psi K^{\pm}}$  obtained from UML fits to the mass spectra
- Relative reconstruction efficiencies estimated from MC (corrected for data-MC differences)
- Known branching ratios from PDG,  $f_u/f_{d(s)}$  from HFLAV







# Backgrounds

Partially reconstructed *b*-hadron decays

- Mostly in the low di-muon mass region
- Shape free in the mass fit



### **Peaking backgrounds**

- Hadronic B<sup>0</sup><sub>s</sub> decays where hadrons are misidentified as muons
- Simulated and fixed in the mass fit



### **Continuum background**

- Combinatorics of  $\mu$  and uncorrelated hadron decays
- Reduced by BDT
- Linear shape constrained in the mass fit across BDT bins
- Systematics due to  $B_c^{\pm} \rightarrow J/\psi \mu \nu$ and  $B_{(s)}^0/\Lambda_b^0 \rightarrow h \mu \nu$  decays



### BDT and signal yield extraction

- BDT formed from 15 variables
  - kinematics, isolation, B-vertex separation from PV
- BDT output validated on reference B<sup>±</sup> → J/ψK<sup>±</sup> and control B<sup>0</sup><sub>s</sub> → J/ψφ channels, observed difference applied as a correction to signal channel
- Signal region divided into four BDT bins with constant signal efficiency
- Simultaneous extraction of  $B_s^0 \rightarrow \mu\mu$  and  $B^0 \rightarrow \mu\mu$ yields from unbinned maximum likelihood fit to di-muon mass distributions in the four BDT bins





P. Řezníček

### Results

• Contours obtained using Neyman construction



#### **Standard Model**

$$\mathcal{B}(B^0_s o \mu\mu) = (3.66 \pm 0.14) imes 10^{-9} \ \mathcal{B}(B^0 o \mu\mu) = (1.03 \pm 0.05) imes 10^{-10}$$

ATLAS 2015 + 2016 data  

$$\mathcal{B}(B^0_s \to \mu\mu) = (3.2^{+1.1}_{-1.0}) \times 10^{-9}$$
  
 $\mathcal{B}(B^0 \to \mu\mu) < 4.3 \times 10^{-10}$  at 95% CL

ATLAS Run 1 + 2015 + 2016 data  $\mathcal{B}(B^0_s \to \mu\mu) = (2.8^{+0.8}_{-0.7}) \times 10^{-9}$  $\mathcal{B}(B^0 \to \mu\mu) < 2.1 \times 10^{-10}$  at 95% CL

- $\bullet\,$  Combined measurement compatible with SM at 2.4  $\sigma\,$
- Statistic uncertainties dominate
- Largest systematics contribution from di-muon mass fit procedure

### Combination of ATLAS+CMS+LHCb



 $2.69^{+0.37}_{-0.35}$ 

< 1.9 at 95% CL

< 0.052 at 95% CL

 $1.91^{+0.37}_{-0.35}$ 

• Combining binned 2D profile likelihoods,  $f_s/f_d$  the only source of correlation between experiments



P. Řezníček

Ratio of above

 $\mathcal{B}(B^0_s 
ightarrow \mu\mu) imes 10^{-9}$ 

 $\mathcal{B}(B^0 \to \mu\mu) \times 10^{-10}$ 

 $au_{B^0_\epsilon o \mu\mu}$  [ps] (LHCb+CMS)

### Summary

- Latest ATLAS measurements of *CP*-violation in  $B_s^0 \rightarrow J/\psi\phi$  decay and branching ratio measurement of rare  $B_{(s)}^0 \rightarrow \mu\mu$  decays compatible with Standard Model predictions
- Full Run 2 data analyses in progress
  - CPV measurement releasing  $\Delta m_s$  and direct-CP  $\lambda$ , improvements in tagging and fit model
  - Rare decays including  $B_s^0 
    ightarrow \mu \mu$  lifetime analysis
- Program continuation in Run 3 and HL-LHC
  - HL-LHC projections CERN Yellow Report Monograph 7 (2019) pp. 1-1418



#### $B_s^0 ightarrow \mu \mu$ full Run 2 and HL-LHC projections

