

Lepton Flavor (Universality) Violation

Lepton Flavor Violation (LFV)

- Charged lepton flavor is conserved in the SM through accidental symmetry
- Neutrino oscillations exist [arXiv:hep-ex/0701049]: evidence of neutral LFV
- Charged LFV happens in loop diagrams with ν mixing, but strongly suppressed in the SM (rate $\sim 10^{-55}$)
- SM extensions predict a larger BR up to $10^{-10} 10^{-8}$ EPJC57(2008)13-182

Lepton Flavor Universality Violation (LFUV)

 In SM EW couplings are the same for the three lepton flavours

Lepton Flavour measurements \rightarrow strategic sector to look for new Physics

Why look for LF(U)V?

- If we find the violations: proof of New Physics!
- If we don't find the violations: constraints to Beyond the Standard Model theories.

In this talk \to overview of LF(U)V measurements and prospects in CMS with heavy mesons and leptons.

- LFV: $\tau \rightarrow 3\mu$ measurement in CMS JHEP01(2021)163;
- LFUV in B Physics: prospects and possibilities in CMS.

Lepton Flavor Violation

LFV Overview - Few Experimental Examples

Direct LFV search can be done in different sectors:

- Higgs sector, with $H(e/\mu\tau)$ decays PRD104(2021)032013
- Top quark decays ($t \rightarrow e\mu q$) JHEP06(2022)082
- Drell-Yann/ Z decays $(Z \rightarrow (e/\mu\tau), Z(e\mu))$ arXiv:2204.10783
- B decays LHCb-TALK-2022-040

LFV Overview - Few Experimental Examples

Direct LFV search can be done in different sectors:

- Higgs sector, with $H(e/\mu\tau)$ decays PRD104(2021)032013
- Top quark decays ($t \rightarrow e\mu q$) JHEP06(2022)082
- Drell-Yann/ Z decays $(Z \rightarrow (e/\mu\tau), Z(e\mu))$ arXiv:2204.10783
- B decays LHCb-TALK-2022-040
- Leptonic decays ($\tau \rightarrow 3\mu$)

LFV $au o 3\mu$ in CMS - Experimental Scenario

- With $\tau \to 3\mu$ analysis the LFV is tested in CMS JHEP01(2021)163.
- The best limit was set from Belle collaboration to $\mathcal{B}(\tau \to 3\mu) < 2.1 \cdot 10^{-8}$ at 90% confidence level PLB687(2010)139-143.
- On this topic, also check Caterina's poster

arXiv:1909.12524

F.Riti

LFV $au o 3\mu$ in CMS - Heavy Flavours (HF) channel

Two channels for this search, depending on the production of the τ :

Heavy Flavours (HF) channel

- $D_s^+ \rightarrow \tau^+ \nu$, $B \rightarrow \tau + X$
- Abundant, but challenging for very low p_T forward muons
- Veto on dimuon decays from hadronic resonances to suppress bkg
- To reduce uncertainties, $D_s^+ \to \phi \pi^+ \to \mu + \mu^- \pi^+ \text{ is used to normalize}$ the signal yield
- BDT trained to improve the signal to bkg ratio with 10 variables: muons kinematics and their iso; trimuon vertex properties and its iso.

LFV $au ightarrow 3\mu$ in CMS - 6 categories for HF

LFV $au o 3\mu$ in CMS - W channel

$W \rightarrow \tau \nu$ channel

- $\sim 10^4$ less yield, but more clear signature: higher p_T , isolation, MET and transverse mass $\sqrt{2p_T^{3\mu}p_T^{miss}(1-cos\Delta\phi)}$
- Veto on dimuon decays from hadronic resonances to suppress bkg
- ullet BDT trained to separate signal from bkg with 18 variables: muons quality; au kinematics and iso; trimuon vertex properties.

LFV $au o 3\mu$ in CMS - Results and Interpretation

No evidence of LFV found ¹

- **HF channel**: $9.2 \cdot 10^{-8} (10.0 \cdot 10^{-8})$ with 90% CL
- W channel: $20 \cdot 10^{-8} (13 \cdot 10^{-8})$ with 90% CL

with a combined limit of $8.0\cdot 10^{-8} (6.9\cdot 10^{-8})$ with 90% CL.

The analysis includes only **2016 data**, and an updated analysis with the complete Run II dataset is on-going.

Observed (Expected)

Lepton Flavor Universality

Violation

LFUV in the B Sector

$$R_{H_s} = rac{\mathcal{B}(H_b
ightarrow H_s \mu^+ \mu^-)}{\mathcal{B}(H_b
ightarrow H_s e^+ e^-)}$$

- $b \rightarrow sI^+I^-$
- loop level \rightarrow smaller BR;
- ν-less → fully reconstructed;
- precise predictions.

$$R_{H_c} = rac{\mathcal{B}(H_b
ightarrow H_c au^- ar{
u_{ au}})}{\mathcal{B}(H_b
ightarrow H_c \mu^- ar{
u_{ au}})}$$

- $b \rightarrow cl^-\bar{\nu}_l$
- tree level → large BR; sensitive to syst uncert;
- ν 's \rightarrow missing mass; template fits.
- sensitive to QCD calculations.

 LFUVs can be detected also from angular analyses of B mesons (Alessio's talk) and measurements of rare B decays (Dmytro's talk)

LFU Anomalies

 There are several experiments that suggest deviations from the SM predictions (several talks on this topic)

LHCb Nature Phys. 18 (2022) 277;

HFLAV 2021 Update

Theoretical Interpretation of anomalies

What are the proposed explanations for a deviation from the SM predictions?

Extensions of the SM, with enhanced weak couplings to third-generation leptons and quarks, such as interactions involving

- a charged Higgs boson [1][2][3][4][5];
- leptoquarks (LQ) EXOtica;
- new vector bosons (Summary plots EXO).

What can CMS do?

- General purpose detector with magnetic field for charged particles measurements;
- CMS has high instantaneous luminosity for high-p_T physics program and central acceptance: it can be complementary to other experiments like LHCb, with forward acceptance
- A huge effort has been done in CMS in the past years to make LFUV measurements in B physics possible
- The challenge for B-ph is trigger on soft objects other than $\mu s \to CMS$ Bparking campaign

CMS parked data

- CMS has implemented for 2018 a new trigger for soft muons from B-meson decays CMS-DP-2019/043
- Events recorded with a trigger logic that requires the presence of a single displaced muon
- $b\bar{b}$ events with high purity
- The μ candidate responsible for the trigger comes from the "tag-side" b hadron that undergoes a $b \to \mu + X$ decay.
- The "signal-side" b hadron decays naturally as it is not biased by the trigger requirements.

CMS parked data

 The trigger threshold depends on the instantaneous luminosity: when it decreases, together with the other physics triggers, the B-park trigger requirements are loosened to exploit spare bandwidth.

B-hadron purity

• 12 Billion events recorded in 2018 with $b\bar{b}$ purity of 75 %

- The purity determination relies on the decay $B^0 \to D^{*+} \mu \nu \to (D^0 \pi_{soft}) \mu \nu \to (K \pi \pi_{soft}) \mu \nu$
- In the plot the difference for D*+ and D⁰ is shown
- The product of K and μ is required to be +1 (right sign), or -1 (wrong sign)

Low- p_T lepton reconstruction

- The lepton p_T distributions are very soft
- ullet This imply challenges related to e and au reco efficiency

New low- p_T electron reconstruction scheme CMS-DP-2019-043

low- p_T tau reconstruction algorithm dedicated to hadronic $au o \pi\pi\pi\nu$ decay CMS-DP-2020-039

New

Standard Candles

 using a fraction of the B Parking dataset, invariant mass distributions are computed for some B decays

CMS-DP-2019-043

- R(K) and R(K*) normalisation channels
- Useful also to test the low- p_T reconstruction algorithm

Considerations on BParking potential

The possible measurements that can be done with the BParking dataset

- Single μ analyses: B-Parking makes them possible for the first time; the B single-muon dataset is the largest ever collected.
- B unbiased: Measurements of hadronic decays that were precluded before the B-Parking dataset → fragmentation fraction.

Conclusions

- LF(U)V is a very exciting field to look for new physics
- In CMS a big effort is put into LFV and LFUV analyses
- The $\tau \to 3\mu$ LFV measurement with only 2016 data is published and an analysis with all Run II data is ongoing
- The B-parked dataset has been collected in 2018 to allow CMS to enter the test of LFUV measurements, with the B-single muon dataset the largest ever collected
- Many analyses on going with this dataset and new results coming!