### Rare charm decays at LHCb

### Marianna Fontana on behalf of the LHCb collaboration

LPNHE (Paris)

ICHEP conference 2022 Bologna, Italy, 06 - 13 July 2022



### Outline

- Introduction
- Full angular analysis of  $D^0 
  ightarrow h^+ h^- \mu^+ \mu^-$  decays

[Phys. Rev. Lett. 128 221801]

- Search for D<sup>0</sup> decays into two muons [LHCb-PAPER-2022-029 in preparation] NEW
- Conclusion



#### Introduction

### Rare charm decays

- Unique probe of up-type quark FCNC and complementary to B and K physics
- · Very suppressed in the SM due to GIM and CKM suppressions
- · Precise theoretical predictions are difficult
- · SM can be tested exploiting (approximate) asymmetries with clean null-tests
  - · Searches for extremely rare and forbidden decays
  - · Angular and CP asymmetries of resonance-dominated decays
  - · Lepton flavour universality measurements

$$\begin{array}{cccc} D^0 \rightarrow \mu^+ e^- & D^0_i \rightarrow \pi^+ t^+ t^- & D^0 \rightarrow \pi^- \pi^+ V(\rightarrow ll) & D^0 \rightarrow K^{\ast 0} \varphi' \\ D^0 \rightarrow p e^- & D^0_{(s)} \rightarrow K^+ t^+ t^- & D^0 \rightarrow \rho & V(\rightarrow ll) & D^0 \rightarrow (\phi, \rho, \omega) & \varphi \\ D^{(\ast)}_{(s)} \rightarrow h^+ \mu^+ e^- & D^0 \rightarrow K^- \pi^+ t^+ t^- & D^0 \rightarrow K^- X^{\ast 0} (\rightarrow ll) \\ D^0_{(s)} \rightarrow K^{\ast 0} t^+ t^- & D^0 \rightarrow \phi & V(\rightarrow ll) & D^s_s \rightarrow \pi^+ \phi(\rightarrow ll) \\ \end{array}$$

| LFV, LNV,                                                                  | BNV               | FCNC              |                   |                        |                      |                                                                                                     |                                                                          | VMD                                                     | I                                     | Radia                                                        | tive                                                                      |                                                          |
|----------------------------------------------------------------------------|-------------------|-------------------|-------------------|------------------------|----------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|
| 0                                                                          | 10 <sup>-15</sup> | 10 <sup>-14</sup> | 10 <sup>-13</sup> | 10 <sup>-12</sup>      | 10 <sup>-11</sup>    | 10 <sup>-10</sup>                                                                                   | 10 <sup>-9</sup>                                                         | 10 <sup>-8</sup>                                        | 10 <sup>-7</sup>                      | 10 <sup>-6</sup>                                             | 10 <sup>-5</sup>                                                          | 10 <sup>-4</sup>                                         |
| $D^+_{(s)} \to h^- l^+ l^+$ $D^0 \to X^0 \mu^+ e^-$ $D^0 \to X^{} l^+ l^+$ |                   |                   | $D^0$             | $\rightarrow ee^{D^0}$ | $\rightarrow \mu\mu$ | $D^{0} \rightarrow \pi$ $D^{0} \rightarrow \rho$ $D^{0} \rightarrow K^{4}$ $D^{0} \rightarrow \phi$ | $\pi^{+}l^{+}l^{-}$<br>$l^{+}l^{-}$<br>$K^{-}l^{+}l^{-}$<br>$l^{+}l^{-}$ | $D^{0} \rightarrow D^{0} \rightarrow D^{0} \rightarrow$ | $\frac{K^{+}\pi^{-}V(-)}{K^{*0}}V(-)$ | → II) D <sup>-</sup><br>II) D <sup>1</sup><br>D <sup>1</sup> | $f^{+} \to \pi^{+} \phi$<br>$f^{0} \to K^{-} \pi$<br>$f^{0} \to K^{*0} V$ | $(\rightarrow ll)$ $(\rightarrow ll)$ $(\rightarrow ll)$ |

### $D^0 ightarrow h^+ h^- \mu^+ \mu^-$ decays

- 4-body decays have measurable BFs and rich set of observables
- First observation of the rarest charm decays to date using 2012 data (2fb<sup>-1</sup>)

 $\begin{array}{l} \mathcal{B}(D^0 \to \pi^- \pi^+ \mu^+ \mu^-) \sim 9.6 \times 10^{-7} \\ \mathcal{B}(D^0 \to K^- K^+ \mu^+ \mu^-) \sim 1.5 \times 10^{-7} \\ \end{array} \\ \end{array}$  [Phys. Rev. Lett. 119 (2017) 181805]

- First full angular analysis with Run 1+2 data
- The regions dominated by resonances can be used to perform SM null tests, due to interference between short- and long-distance contributions



#### $D^0 ightarrow h^+ h^- \mu^+ \mu^-$

### Observables

- The differential decay rate is expressed as the sum of nine angular coefficients I<sub>1-9</sub>
- Measure  $p^2$ ,  $cos\theta_h$  integrated  $< I_i > (i = 2 9)$  for  $D^0$  and  $\bar{D}^0$
- Flavour average and CP asymmetries

CP asymmetry

$$A_{CP} = \frac{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) - \Gamma(\bar{D}^0 \to h^+ h^- \mu^+ \mu^-)}{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) + \Gamma(\bar{D}^0 \to h^+ h^- \mu^+ \mu^-)}$$

• Measurements in  $q^2$  bins

|                                       | $m(\mu^+\mu^-)$ [MeV/ $c^2$ ] |                      |           |           |          |           |    |  |
|---------------------------------------|-------------------------------|----------------------|-----------|-----------|----------|-----------|----|--|
| Decay mode                            | low mass                      | $\eta = \rho/\omega$ |           |           |          | high mass |    |  |
| $D^0 \rightarrow K^+ K^- \mu^+ \mu^-$ | < 525                         | NS                   | S  > 565  |           | NA       |           | NA |  |
| $D^0 \to \pi^+\pi^-\mu^+\mu^-$        | < 525                         | NS                   | 565 - 780 | 780 - 950 | 950-1020 | 1020-1100 | NS |  |

NA = not available, NS = no signal

#### [Phys. Rev. Lett. 128 221801]



$$\begin{aligned} p^2 &= m^2(h^+h^-) \\ q^2 &= m^2(\mu^+\mu^-) \end{aligned}$$



#### Rare charm decays @LHCb

#### $D^0 ightarrow h^+ h^- \mu^+ \mu^-$

### Results

Examples of SM null tests < S<sub>5,6,7</sub> > [< S<sub>6</sub> >~ A<sub>FB</sub>]



• Examples of  $< A_6 > [< A_6 > \sim A_{FB}^{CP}], < A_{8,9} > (Triple Product Asym.), A_{CP}$ 



### The $D^0 ightarrow \mu^+ \mu^-$ decay

- Very rare decay: FCNC + helicity suppression
- Very clean experimental signature
- Minimal hadronic uncertainties
- Key in constraining NP: different kind of leptoquarks explaining the B anomalies contribute at loop level for B but tree for D

 $\overline{n}$ 

- Receives two contributions within the SM ٠
  - Short Distance:  $\mathcal{B}(D^0 \rightarrow \mu^+ \mu^-) \sim 10^{-18}$
  - Long Distance:  $\mathcal{B}(D^0 \rightarrow \mu^+ \mu^-) \sim 10^{-11}$
- Current upper limit (1 fb<sup>-1</sup>)

 $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 6.2 \times 10^{-9} @ 90\% \text{ CL}$ [Phys. Lett. B (2013) 725]

#### Analysis strategy

- Run 1 (2011-2012)+2 (2015-2018) (9 fb<sup>-1</sup>)
- Tagged  $D^{*+} \rightarrow D^0 \pi^+$  decay
- BDT against combinatorial background ٠
- PID to suppress  $hh \rightarrow \mu\mu$  misID ٠
- Fit simultaneously in three BDT intervals ٠

#### Rare charm decays @LHCb

 $\mu^+$  $W^{\mp}$ d, s, b $\gamma, Z^0$  $W^{\pm}$ μ<sup>-</sup> Normalised candidates  $\rightarrow \pi^- \pi^+$  simulation 0.9 LHCb  $\pi^+$  data 0.8  $6 \, fb^{-1}$ simulation 0.7 μ<sup>+</sup> weighted 0.6 Preliminary 0.5 0.40.3 0.2 0.1 0 0.2 0.4 0.6 0.8 0 BDT

LHCb-PAPER-2022-029 in preparation

NEW

 $D^0 \rightarrow \mu^+ \mu^-$ 

#### $D^0 ightarrow \mu^+ \mu^-$

### Normalisation

- Normalisation to  $D^0 
ightarrow \pi^-\pi^+, \; K^-\pi^+$  decays

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) = \frac{N_{D^0 \to \mu^+ \mu^-}}{N_{D^0 \to h^+ h^-}} \cdot \frac{\varepsilon_{h^+ h^-}}{\varepsilon_{\mu^+ \mu^-}} \cdot \rho \cdot \mathcal{B}(D^0 \to h^+ h^-) \equiv \alpha N_{D^0 \to \mu^+ \mu^-}$$

- +  $\varepsilon$  is the efficiency
- N yield of a given channel
- p is the trigger prescale of the normalisation channel
- $\alpha = (2.15 \pm 0.34) \times 10^{-11}$  is the single event sensitivity
- Normalisation yield extracted through a ML fit to  $\Delta m = m(D^{*+}) m(D^0)$  distribution



### $D^0 ightarrow \mu^+ \mu^-$

### Fit

- Signal yield extracted with a ML fit to  $m(D^0)$  and  $\Delta m$  distributions
- · Fit simultaneously in three BDT intervals
- · Constraints on the expected number of misID backgrounds decays
- Systematic uncertainties related to the normalisation, and the background shapes and yields, are included in the fit as Gaussian constraints to the relevant parameters
- · Dominant systematic uncertainty coming from the calibration of the hadronic trigger efficiency





#### $D^0 ightarrow \mu^+ \mu^-$

### Cross-check and results

- $\pi\pi \rightarrow \mu\mu$  PID efficiency obtained from simulation, cross-checked using control samples in data
- · Agreement over the full range of the muon identification discriminant variable



- No significant signal observed
- · Upper limit put on the branching fraction

 ${\cal B}(D^0 o \mu^+ \mu^-) <$  2.9 (3.3) imes 10<sup>-9</sup> @ 90 (95)% CL

· Improvement of more than a factor two with respect to the previous LHCb result

#### Most stringest limit of FCNC in the charm sector

M. Fontana (LPNHE)

Rare charm decays @LHCb

#### Prospects

### Towards ultimate precision

#### arXiv:1808.08865

- · The charm rare analyses are statistically limited
- · The LHCb upgrades will largely improve many measurements
- Upgrade I: 40 MHz software trigger replaced 1 MHz Run 2 trigger



Prospects

### Prospects for existing measurements

Limits on BFs (away from resonances for multibody)

| Mode                               | Upgrade (50 fb <sup>-1</sup> ) | Upgrade II (300 fb <sup>-1</sup> ) |
|------------------------------------|--------------------------------|------------------------------------|
| $D^0  ightarrow \mu^+ \mu^-$       | $4.2 	imes 10^{-10}$           | $1.3 	imes 10^{-10}$               |
| $D^+ 	o \pi^+ \mu^+ \mu^-$         | 10 <sup>-8</sup>               | $3	imes 10^{-9}$                   |
| $D^+_s  ightarrow K^+ \mu^+ \mu^-$ | 10 <sup>-8</sup>               | $3	imes 10^{-9}$                   |
| $\Lambda_c 	o p \mu^+ \mu^-$       | $1.1 	imes 10^{-8}$            | $4.4	imes10^{-9}$                  |
| $D^0 	o e^\pm \mu^\mp$             | 10 <sup>-9</sup>               | $4.1 	imes 10^{-9}$                |

Statistical precision on asymmetries (phase space integrated)

| Mode                                   | Upgrade (50 fb <sup>-1</sup> ) | Upgrade II (300 fb $^{-1}$ ) |
|----------------------------------------|--------------------------------|------------------------------|
| $D^+  ightarrow \pi^+ \mu^+ \mu^-$     | 0.2%                           | 0.08%                        |
| $D^0  ightarrow \pi^+\pi^-\mu^+\mu^-$  | 1%                             | 0.4%                         |
| $D^0 	o K^- \pi^+ \mu^+ \mu^-$         | 0.3%                           | 0.13%                        |
| $D^0  ightarrow K^+ \pi^- \mu^+ \mu^-$ | 12%                            | 5%                           |
| $D^0  ightarrow K^- K^+ \mu^+ \mu^-$   | 4%                             | 1.7%                         |

A. Contu - Towards ultimate precision in Flavor Physics, Durham (2-4 April 2019)

#### Conclusion

### Conclusion

- Rare and forbidden charm decays constitutes a unique environment to look for NP
- · LHCb is giving major contributions in the charm rare sector
- Many LHCb measurements are world's best, but there is still space for improvement wrt SM predictions and to reach NP sensitivity
- New studies are expected for Run 2 data
  - Update the current search measurements ( $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ , ..)
  - Dielectron modes will also follow soon
  - Radiative decays should be possible as well, although background rejection is non-trivial
- LHCb Upgrade I (Run 3-4) is currently taking data and many new measurements will come in the next few years
- The full potential of the detector in flavour physics will be exploited with the Upgrade II (Run 5 and beyond)

### Thanks for your attention!

Backup

### The LHCb experiment

- Single arm forward spectrometer
- Optimized for *b* and *c*-physics
- · Good vertex resolution and tracking
- Excellent particle identification

JINST 3 (2008) S080005

Large charm x-sec (
$$p_T < 8 \text{ GeV}/c, 2.0 < y < 4.5$$
)

$$\sigma(c\bar{c},\sqrt{s}=$$
 7 TeV $)=($ 1419 $\pm$  133 $)\mu$ b [Nucl.Phys.B 871(2013) 1-20]

 $\sigma(car{c},\sqrt{s}=$  13 TeV)=(2940  $\pm$  240 $)\mu$ b [JHEP03(2016)159]

· Fast, efficient and flexible high bandwidth trigger system



## $D^0 ightarrow h^+ h^- \mu^+ \mu^-$

PAPER-2021-035 arXiv:2111.03327



M. Fontana (LPNHE)

Rare charm decays @LHCb

#### $D^+_{(s)} \rightarrow h^+ \ell^+ \ell^-$

# Search for $D^+_{(s)} ightarrow h^\pm \ell^+ \ell^-$ decays

- Analysed 25 decays  $D^+_{(s)} \rightarrow h\ell\ell$ 
  - h is a charged kaon or pion
  - $\ell$  is an electron or muon
  - Includes LFV and LNV decays

#### Allowed in the SM, Forbidden in the SM

- Analysis performed with 2016 dataset (1.7 fb<sup>-1</sup>)
- Normalisation with  $D^+_{(s)} o \phi(\ell\ell)\pi^+$
- Regions dominated by resonances in dilepton mass are vetoed when fitting for the signal



#### Mod. Phys. Lett. A 36 (2021) 2130002

### Analysis strategy

· PID is used to suppress the hadronic misidentified backgrounds

 $D^+_{(s)} \rightarrow h^+ \ell^+ \ell^-$ 

- · Fit to the three-body invariant mass to measure signal yields
- Peaking background modelled using fast simulation [Comput. Phys. Comm. 214C (2017) pp. 239-246]



### Results

- · Results consistent with background only hypothesis
- Limits set between  $1.4\times10^{-8}$  and  $6.4\times10^{-6}$
- · Results improve upon the prior world's best constraints by up to a factor of 500

|                                               | Branching fraction upper limit $[10^{-9}]$ |                 |                 |      |                |                 |  |  |  |  |
|-----------------------------------------------|--------------------------------------------|-----------------|-----------------|------|----------------|-----------------|--|--|--|--|
| Decay                                         |                                            | $D^+$           |                 |      | $D_s^+$        |                 |  |  |  |  |
|                                               | SES                                        | $90\%~{\rm CL}$ | $95\%~{\rm CL}$ | SES  | $90\%~{ m CL}$ | $95\%~{\rm CL}$ |  |  |  |  |
| $D^+_{(s)} \rightarrow \pi^+ \mu^+ \mu^-$     | 0.6                                        | 67              | 74              | 2.4  | 180            | 210             |  |  |  |  |
| $D_{(s)}^{(+)} \rightarrow \pi^- \mu^+ \mu^+$ | 0.3                                        | 14              | 16              | 1.8  | 86             | 96              |  |  |  |  |
| $D^{(+)}_{(s)} \rightarrow K^+ \mu^+ \mu^-$   | 1.2                                        | 54              | 61              | 3.8  | 140            | 160             |  |  |  |  |
| $D^{(+)}_{(s)} \rightarrow K^- \mu^+ \mu^+$   | -                                          | -               | -               | 1.2  | 26             | 30              |  |  |  |  |
| $D^{(+)}_{(s)} \rightarrow \pi^+ e^+ \mu^-$   | 0.6                                        | 210             | 230             | 3.1  | 1100           | 1200            |  |  |  |  |
| $D^{+}_{(s)} \rightarrow \pi^{+}\mu^{+}e^{-}$ | 0.4                                        | 220             | 220             | 2.2  | 940            | 1100            |  |  |  |  |
| $D^{(+)}_{(s)} \rightarrow \pi^- \mu^+ e^+$   | 0.4                                        | 130             | 150             | 2.0  | 630            | 710             |  |  |  |  |
| $D^{(+)}_{(s)} \rightarrow K^+ e^+ \mu^-$     | 0.7                                        | 75              | 83              | 3.7  | 790            | 880             |  |  |  |  |
| $D^{(+)}_{(s)} \rightarrow K^+ \mu^+ e^-$     | 0.5                                        | 100             | 110             | 2.5  | 560            | 640             |  |  |  |  |
| $D^{(+)}_{(s)} \rightarrow K^- \mu^+ e^+$     | -                                          | -               | -               | 2.4  | 260            | 320             |  |  |  |  |
| $D^{(+)}_{(s)} \rightarrow \pi^+ e^+ e^-$     | 1.9                                        | 1600            | 1800            | 8.1  | 5500           | 6400            |  |  |  |  |
| $D^{(+)}_{(s)} \rightarrow \pi^- e^+ e^+$     | 0.9                                        | 530             | 600             | 4.1  | 1400           | 1600            |  |  |  |  |
| $D^{(+)}_{(s)} \rightarrow K^+ e^+ e^-$       | 4.4                                        | 850             | 1000            | 14.8 | 4900           | 5500            |  |  |  |  |
| $D^{(+)}_{(s)} \rightarrow K^- e^+ e^+$       | -                                          | -               | -               | 4.1  | 770            | 840             |  |  |  |  |

SES = single event sensitivities, i.e. the BF corresponding to a single observed signal event

M. Fontana (LPNHE)