Tau physics at Belle

ICHEP2022

Kenta Uno

Niigata university

2022/7/8

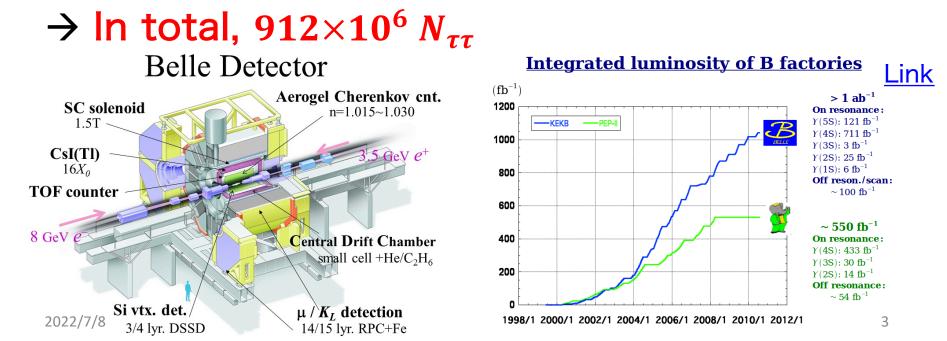
Introduction

<u>r lepton: heaviest lepton in Standard Model</u>

onic decays

- Many decay modes: lep
- → Sensitive to new physic Eg. lepton flavor violation (LFV), CP violation

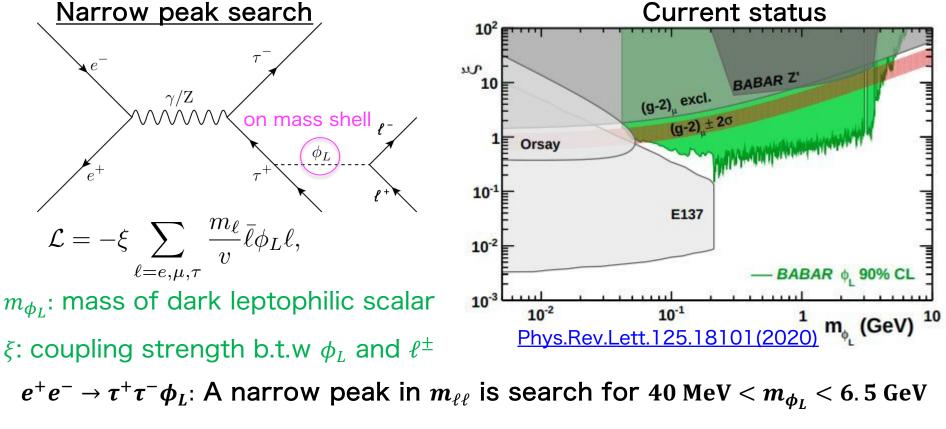
Recent *τ* physics resu


- Search for a dark leptophilic scalar $e^+e^- \rightarrow \tau^+\tau^-\phi_L$
 - Belle-CONF-2201 will appear soon
- Search for tau LFV $\tau^{\pm} \rightarrow \ell^{\pm} \gamma$ <u>JHEP 2110, 019</u>
- Electric dipole moment of the tau lepton <u>JHEP 2204, 110</u>
 Today, these three results are reported

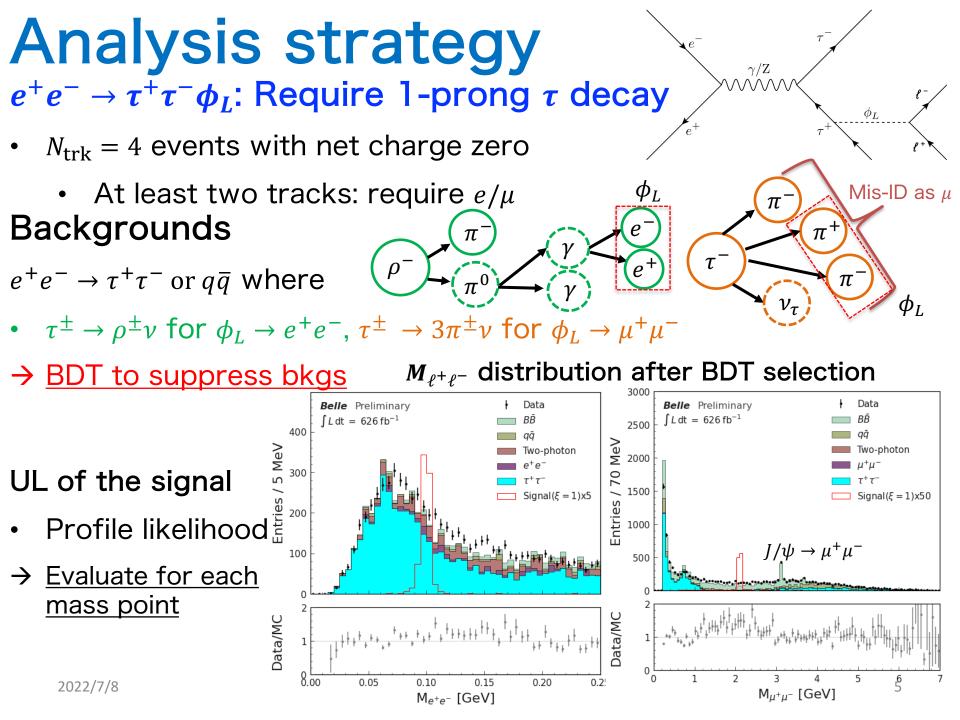
Belle II

Poster: studies about partial wave analysis of $\tau \rightarrow 3\pi\nu$ decay by A.Rabusov2022/7/8Please see his poster!

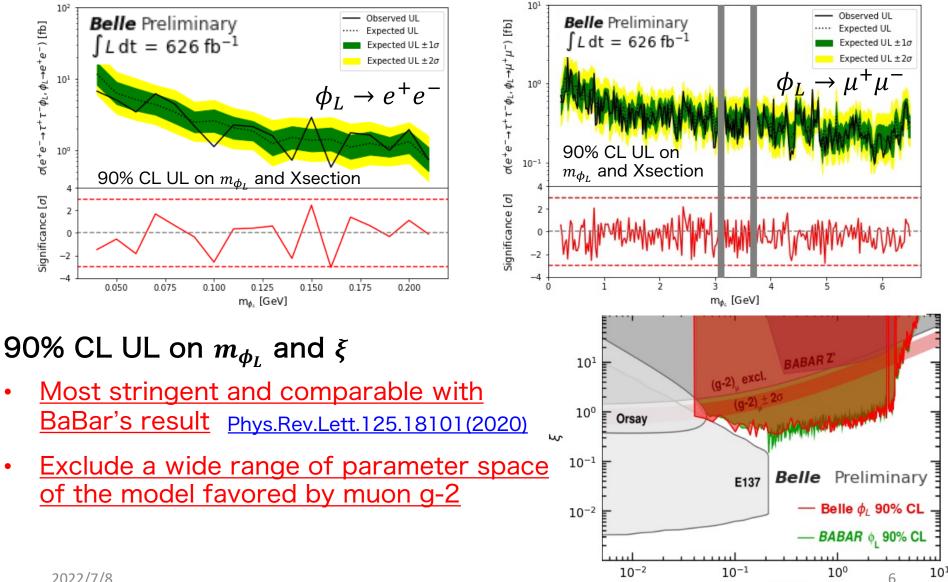
Belle experiment


- Operation: 1999 2010
- Collision: 8 GeV e^- , 3.5 GeV e^+
 - $\sigma(ee \rightarrow bb) \sim 1.1 \text{ nb}, \sigma(ee \rightarrow \tau\tau) \sim 0.9 \text{ nb} \rightarrow \tau \text{ factory!}$
 - Possible to use all $\Upsilon(nS)$ resonance data (n = 1..5)
 - Possible to use off resonance data (~100 fb⁻¹)

Dark scalar via $ee \rightarrow \tau \tau \phi_L$

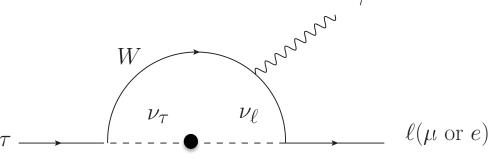

Dark leptophilic scalar couples only with leptons

• Possible to explain muon g-2 anomaly, lepton flavor universality


$$\phi_L \rightarrow e^+e^-$$
 for $m_{\phi_L} < 2m_\mu$, $\phi_L \rightarrow \mu^+\mu^-$ for $m_{\phi_L} > 2m_\mu$

<u>The result using 626 fb⁻¹ data is shown</u>

Result


No significant excess in all mass regions: $\sim 2\sigma$ in a few points

 m_{ϕ_L} [GeV]

Motivation: $\tau \rightarrow \ell \gamma \ (\ell = e, \mu)$ Charged Lepton Flavor Violation (CLFV)

• Small probability via neutrino oscillations: $B(\tau \rightarrow \mu\gamma) < O(10^{-54})$

• $\tau^{\pm} \rightarrow \ell^{\pm} \gamma$: Sizeable probability in several models

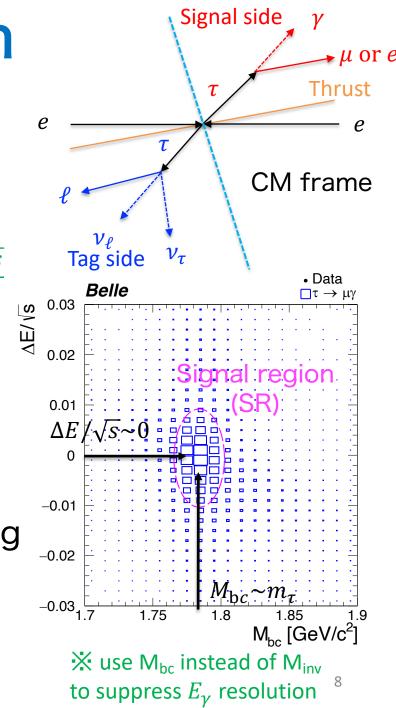
New physics (eg. SUSY) $_{\gamma}$	Model	Reference		
New physics (eg. 5051) $_{\gamma}$	$SM + \nu$ Oscillations	EPJ C8 (1999) 513		
$ ilde{ au}$	$SM+heavy\;Maj\; u_R$	PRD 66 (2002) 034008		
	Non universal Z'	PLB 547 (2002) 252		
, i iii	SUSY SO(10)	PRD 68 (2003) 033012		
$\bigwedge_{\tilde{v}^0}$ \searrow μ	mSUGRA + seesaw	PRD 66 (2002) 115013		
τ (λ) μ	SUSY Higgs	PLB 566 (2003) 217		
$i \longrightarrow i$ · · · · · · · · · · · · · · · · · ·				

Observation of CLFV \rightarrow clear signature of new physics

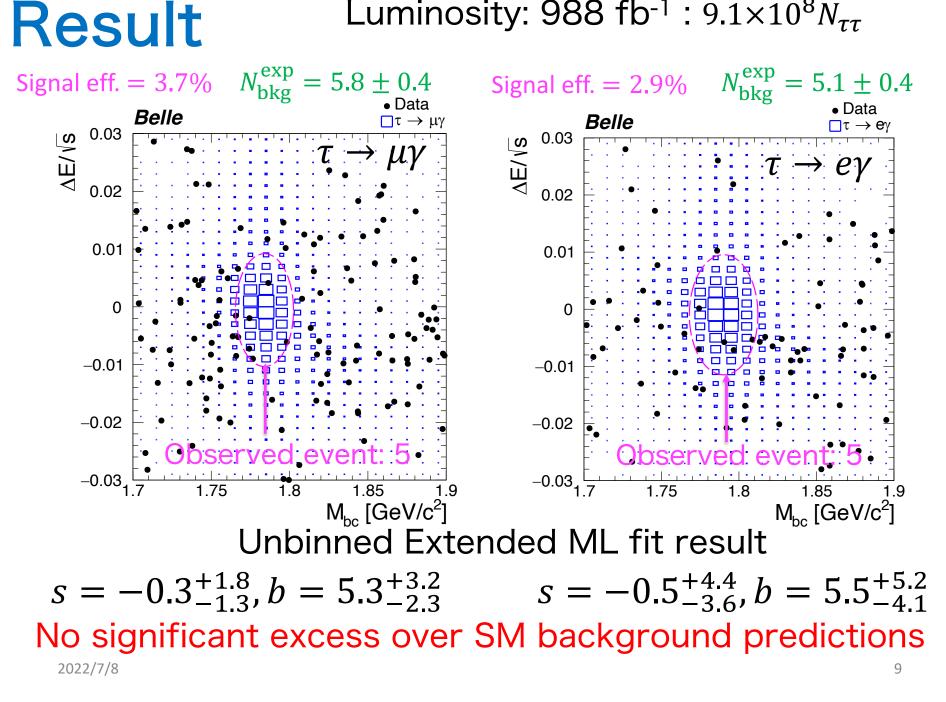
2022/7/8

$\underline{\tau^{\pm}} \rightarrow \ell^{\pm} \gamma$: Sensitive to several models!

Analysis approach Signal-side: $N_{\ell} = 1$ and $N_{\gamma} = 1$ Tag-side: 1 prong τ (Eg. $\ell \nu \nu, \pi \nu, \rho \nu$) Signal region definition

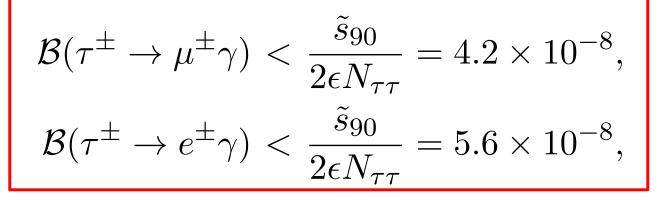

 $E_{\rm beam}^{\rm CM} \sim$

•
$$M_{\rm bc} = \sqrt{\left(E_{\rm beam}^{\rm CM}\right)^2 - \left(p_{\ell\gamma}^{\rm CM}\right)^2}$$


•
$$\Delta E/\sqrt{s} = (E_{\ell\gamma}^{\rm CM} - E_{\rm beam}^{\rm CM})/\sqrt{s}$$

Background component

- $\tau^{\pm} \rightarrow \ell^{\pm} \nu \nu + ISR \gamma$ or beam bkg
- $e^+e^- \rightarrow \ell^+\ell^- + ISR \gamma$ or beam bkg Signal extraction
- Perform UEML fit to the SR
 2022/7/8 Unbinned Extended Maximum Likelihood



Luminosity: 988 fb⁻¹ : $9.1 \times 10^8 N_{\tau\tau}$

Upper limits at 90% CL

Upper limit on branching fraction at 90% CL

$B imes 10^{-8}$ at 90% CL	BaBar $N_{ au au} = 477 imes 10^6$			lle 80×10 ⁶	Belle $N_{ au au} = 912 \times 10^6$		
	Exp	Obs	Exp	Obs	Exp	Obs	
$B(\tau^\pm \to \mu^\pm \gamma)$	8.2	4.4	8.0	4.5	4.9	4.2	
$B(\tau^{\pm} \rightarrow e^{\pm}\gamma)$	9.8	3.3	12	12	6.5	5.6	

- Expected limits: factor 1.5 1.7 improved compared past analysis
- Observed limits, $\tau^{\pm} \rightarrow \mu^{\pm}\gamma$: Most stringent limit to date

2022/7/8

Electric dipole moment of τ CP/T violation parameter in $\gamma \tau \tau$ vertex γ • SM prediction: τ EDM, $d_{\tau} \sim O(10^{-37})$ ecm

 \rightarrow A non-zero d_{τ} would be clear sign of new physics

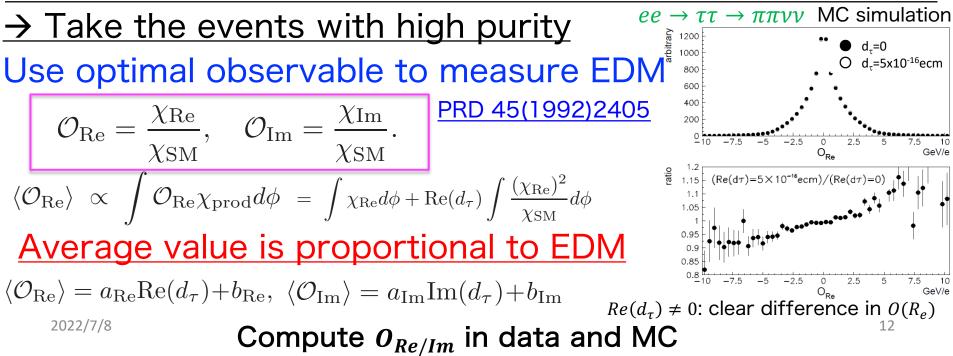
Squared spin density matrix χ_{prod} $\chi_{\text{prod}} = \chi_{\text{SM}} + \frac{\text{Re}(d_{\tau})\chi_{\text{Re}} + \text{Im}(d_{\tau})\chi_{\text{Im}}}{|\mathbf{k}|^2 |\mathbf{k}|^2} + |\mathbf{k}|^2 |\mathbf{k}|^2$

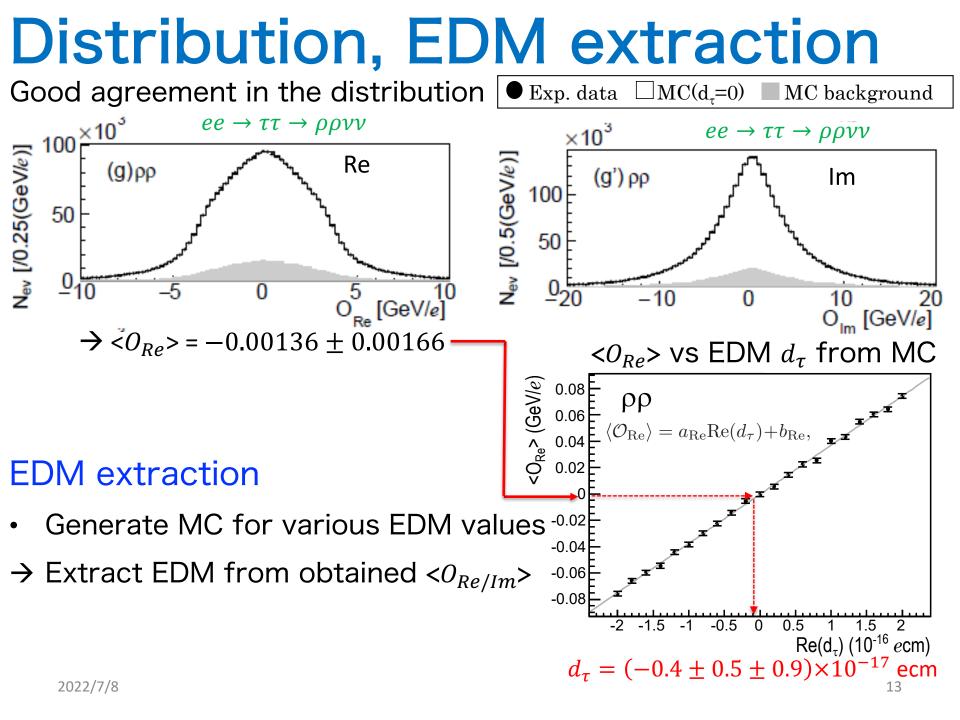
Interference term b.t.w the SM and the EDM

 \rightarrow Proportional to CP spin-momentum correlation

• Spin information is obtained by momentum of decay $\pi^{-} \frac{\operatorname{Re}(d_{\tau})}{2^{p_{2}^{2}/7/8}}$, $\operatorname{Im}(d_{\tau})$, $\operatorname{Im}(d_{\tau}$

τ


 τ^+


τ

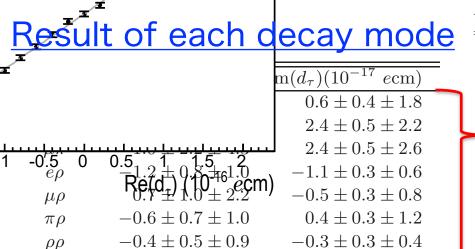
Event selection, observable Select 8 final modes exclusively

• $\tau \tau \rightarrow (e \nu \overline{\nu})(\mu \nu \overline{\nu}), (e \nu \overline{\nu})(\pi \nu), (\mu \nu \overline{\nu})(\pi \nu), (e \nu \overline{\nu})(\rho \nu), (\mu \nu \overline{\nu})(\rho \nu), (\pi \nu)(\rho \overline{\nu}), (\rho \nu)(\rho \overline{\nu}), (\pi \nu)(\pi \overline{\nu}), (\mu \nu \overline{\nu})(\mu \nu \overline{\nu})(\mu \nu \overline{\nu}), (\mu \nu \overline{\nu})(\mu \nu \overline{\nu})(\mu \nu \overline{\nu}), (\mu \nu \overline{\nu})(\mu \nu \overline{\nu})(\mu \nu \overline{\nu})(\mu \nu \overline{\nu}), (\mu \nu \overline{\nu})(\mu \nu \overline{\nu})(\mu$

Mode	Yield	Purity(%)	Background (%)
$e\mu$	6434268	95.8	two-photon process $(ee\mu\mu)$ [2.5], $\tau\tau \to (e\nu\nu)(\pi\nu)$ [1.3]
$e\pi$	2644971	85.7	$\tau \tau \to (e\nu\nu)(\rho\nu) \ [6.5], \ (e\nu\nu)(\mu\nu\nu) \ [5.1], \ (e\nu\nu)(K^*\nu) \ [1.3]$
$\mu\pi$	2503936	80.5	$\tau \tau \to (\mu \nu \nu)(\rho \nu)$ [6.4], $(\mu \nu \nu)(\mu \nu \nu)$ [4.9], $(\mu \nu \nu)(K^* \nu)$ [1.3], two-photon process $(ee\mu\mu)$ [3.1]
$e\rho$	7218823	91.7	$\tau \tau \to (e\nu\nu)(\pi \pi^0 \pi^0 \nu)$ [4.6], $(e\nu\nu)(K^*\nu)$ [1.7]
μho	6203489	91.0	$ au au o (\mu \nu \nu) (\pi \pi^0 \pi^0 \nu)$ [4.3], $(\mu \nu \nu) (K^* \nu)$ [1.6], $(\pi \nu) (\rho \nu)$ [1.1]
πho	2655696	77.0	$\tau\tau \to (\rho\nu)(\rho\nu) \ [6.7], \ (\pi\nu)(\pi\pi^0\pi^0\nu) \ [3.9], \ (\mu\nu\nu)(\rho\nu) \ [5.1], \ (\rho\nu)(K^*\nu) \ [1.4], \ (\pi\nu)(K^*\nu) \ [1.4]$
ho ho	3277001	82.4	$ au au \to (\rho\nu)(\pi\pi^0\pi^0\nu) \ [9.4], \ (\rho\nu)(K^*\nu) \ [3.1]$
$\pi\pi$	460288	71.9	$\tau \tau \to (\pi \nu)(\rho \nu) \ [11.3], \ (\pi \nu)(\mu \nu \nu) \ [8.8], \ (\pi \nu)(K^* \nu) \ [2.5]$

Result

Systematic uncertainty


- Improved simulation, correction
- The larger MC_xstatistics

 $-2.2 \pm 4.3 \pm 5.2$

Consistent with zero EDM

 $\pi\pi$

→ The uncertainty much reduced from previous analysis

$e\mu$	$e\pi$	$\mu\pi$	e ho	μho	πho	ho ho	$\pi\pi$
0.02	0.02	0.01	0.01	0.02	0.01	0.01	0.03
0.01	0.06	0.05	0.01	0.03	0.02	0.01	0.15
0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
0.32	0.48	0.38	0.09	0.22	0.09	0.09	0.36
0.16	0.03	0.17	0.04	0.02	0.02	0.02	0.35
0.07	0.05	0.06	0.02	0.02	0.00	0.00	0.01
0.36	0.48	0.43	0.10	0.22	0.10	0.09	0.52
$e\mu$	$e\pi$	$\mu\pi$	$e\rho$	μho	$\pi \rho$	ho ho	$\pi\pi$
0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
0.02	0.05	0.04	0.00	0.01	0.01	0.01	0.01
0.02	0.20	0.24	0.01	0.01	0.11	0.00	0.00
0.10	0.09	0.06	0.05	0.08	0.04	0.04	0.12
0.14	0.00	0.07	0.03	0.01	0.01	0.01	0.01
0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00
0.18	0.22	0.26	0.06	0.08	0.12	0.04	0.12
	$\begin{array}{c} 0.02\\ 0.01\\ 0.00\\ 0.32\\ 0.16\\ 0.07\\ \hline 0.36\\ \hline e\mu\\ 0.00\\ 0.02\\ 0.02\\ 0.02\\ 0.10\\ 0.14\\ 0.01\\ \end{array}$	$\begin{array}{ccccc} 0.02 & 0.02 \\ 0.01 & 0.06 \\ 0.00 & 0.00 \\ 0.32 & 0.48 \\ 0.16 & 0.03 \\ 0.07 & 0.05 \\ \hline 0.36 & 0.48 \\ \hline e\mu & e\pi \\ 0.00 & 0.00 \\ 0.02 & 0.05 \\ 0.02 & 0.20 \\ 0.10 & 0.09 \\ 0.14 & 0.00 \\ 0.01 & 0.01 \\ \hline \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Weighted average of EDM

 $\begin{aligned} \operatorname{Re}(d_{\tau}) &= (-0.62 \pm 0.63) \times 10^{-17} \ ecm, \\ \operatorname{Im}(d_{\tau}) &= (-0.40 \pm 0.32) \times 10^{-17} \ ecm. \\ \end{aligned}$ Belle 833 fb⁻¹ data

Previous results Belle 29.5 fb⁻¹ data $\text{Re}(d_{\tau}) = (1.15 \pm 1.70) \times 10^{-17} e \text{ cm},$

 $\operatorname{Im}(d_{\tau}) = (-0.83 \pm 0.86) \times 10^{-17} \ e \ \mathrm{cm}^{-17}$

~ 2.7 times smaller error than previous results

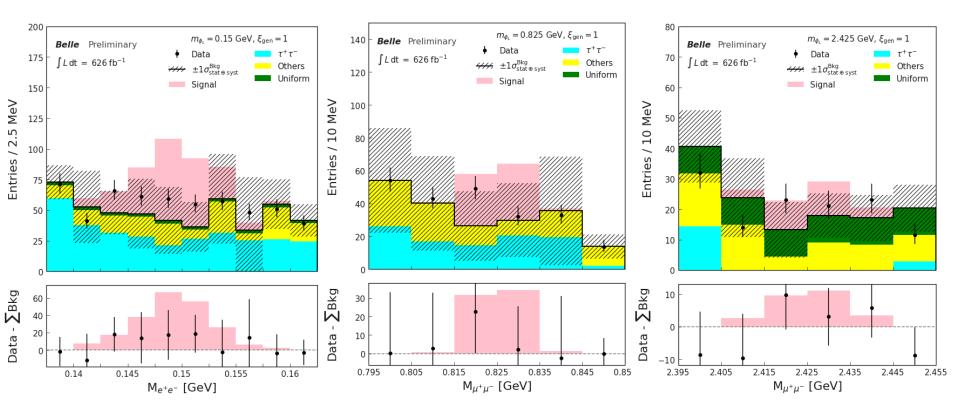
 $-0.9 \pm 0.9 \pm 1.2$

PLB 551 (2003) 16

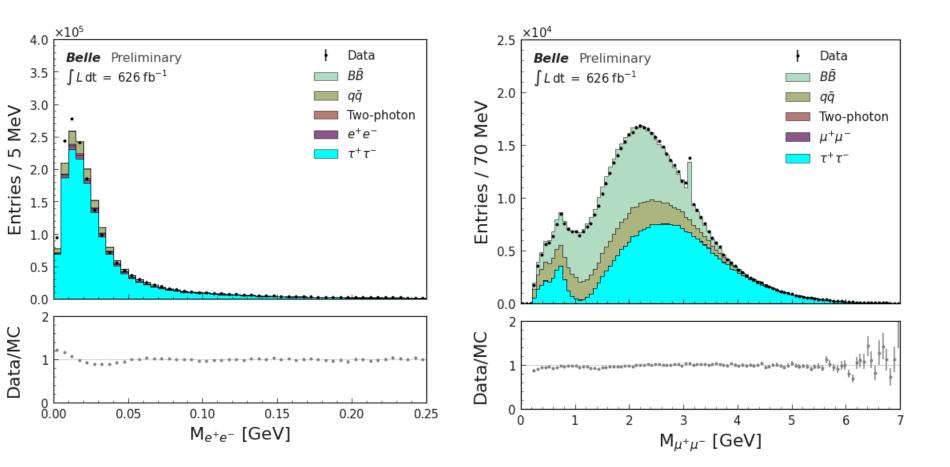
Summary

- Search for dark leptophilic scalar, $e^+e^- \rightarrow \tau^+\tau^-\phi_L$
- New search at Belle. Analyzed 626 fb⁻¹ data
- Better understanding of background events
- Most stringent limits for m_{ϕ_L} , ξ . Exclude g-2 anomaly favored spaces

Tau LFV, $\tau^{\pm} \rightarrow \ell^{\pm} \gamma \ (\ell = e, \mu)$

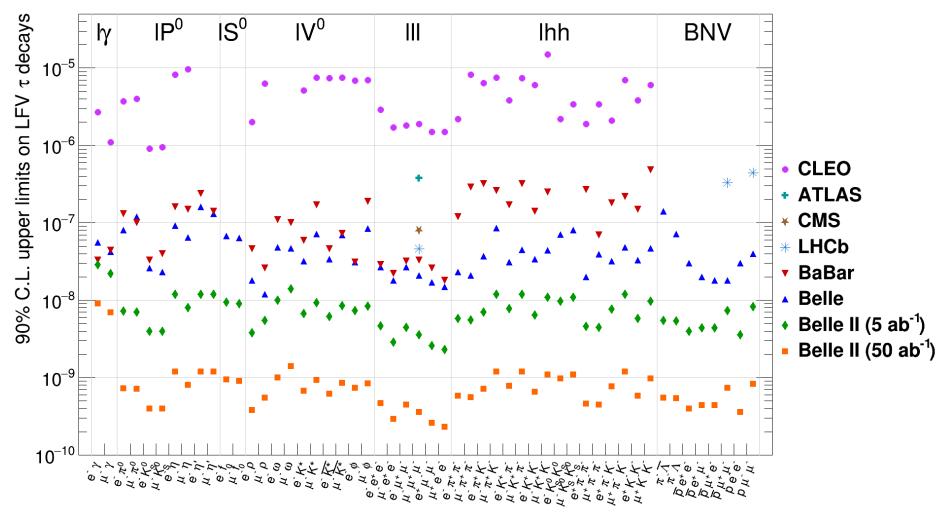

- Use 988 fb⁻¹ data and improve analysis technique
- Most stringent limits for $\tau^{\pm}
 ightarrow \mu^{\pm} \gamma$ at 90% CL

Tau EDM


- Analyzed 833 fb⁻¹ data and use optimal observable method
- 30 times larger data and improved understanding the data
- → Reached the UL of the tau EDM in 10^{-18} ecm level

Backup

Di-lepton distribution $m_{\ell^+\ell^-}$ distribution **Belle** Preliminary



Control region

Summary of LFV in tau decay

arXiv.2203.14919

Past searches for $\tau \rightarrow \ell \gamma$

90%CL	Belle	BaBar
Luminosity	535 fb ⁻¹	516 fb ⁻¹
$N_{ au au}$	4.8×10^{8}	4.8×10^{8}
$B(\tau ightarrow \mu \gamma)$	4.5×10^{-8}	4.4×10^{-8}
$B(\tau ightarrow e \gamma)$	12×10^{-8}	3.3×10^{-8}
Reference	PLB (2008)666	PRL (2010)021802

We updated the results of a search for $\tau \rightarrow \ell \gamma$

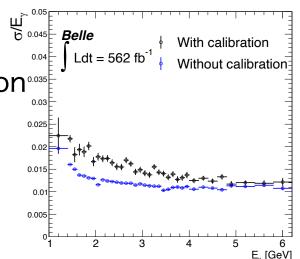
- Increased $N_{\tau\tau}$: $4.8 \times 10^8 \rightarrow 9.1 \times 10^8$ (535 fb⁻¹ $\rightarrow 988$ fb⁻¹)
- Introduced new observables and improved selection
- Calibrated photon energy resolution using $ee \rightarrow \mu\mu\gamma$

Photon energy resolution calibration

Revised the photon-energy resolution calibration

- Use radiative muon event ($ee \rightarrow \mu\mu\gamma$)
 - Cover a broad energy range
- Goal
- Measure the energy resolution in data e⁺
- Calibrate it in simulation to agree with that in data

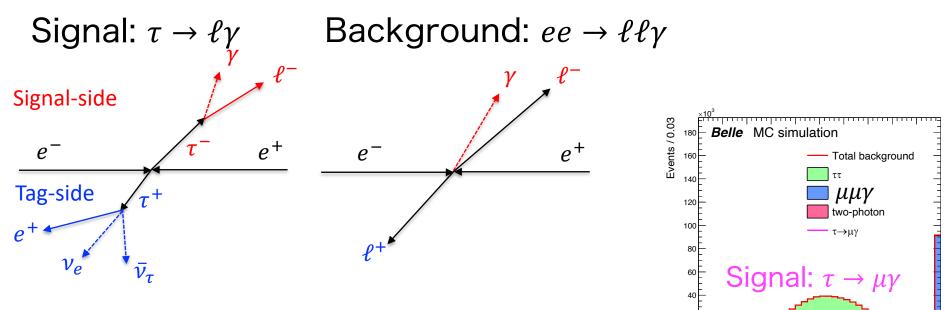
Evaluation


• Subtract E_{recoil} from E_{γ} for data and simulation

•
$$E_{\text{recoil}} = E_{\text{beam}} - E_{\mu^-} - E_{\mu^+}$$

• E_{γ} : measured in the calorimeter

Energy range: 1 GeV – 6 GeV NEW!

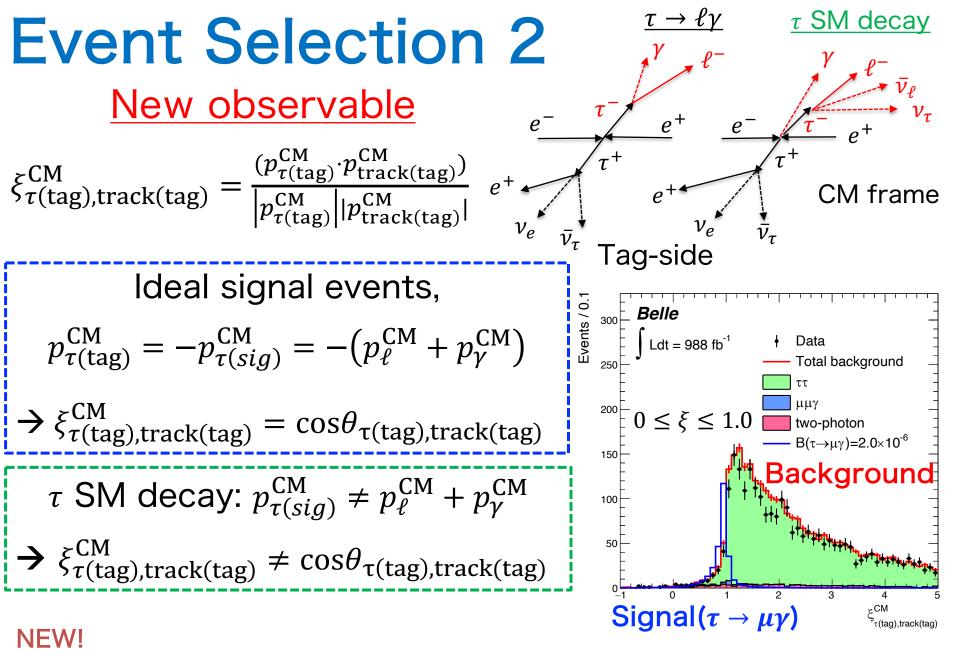

• Calibrated resolution agrees with that in data

21

Event Selection 1

Several observables are used: eg. Total energy, missing angle

Eg. Total energy in CM frame (E_{tot}^{CM}/\sqrt{s})


- $\tau \to \ell \gamma$: $N_{\nu} > 0$ in tag-side, $ee \to \ell \ell \gamma$: $N_{\nu} = 0$
- → Signal distribution depends on tag-side decays ($\tau \rightarrow \ell \nu \nu, \pi \nu, \rho \nu$) NEW!

Optimized selection per channel: ℓ, π, ρ channel

0.3 0.4 0.5 0.6 0.7

E^{CM}/√s

% All selection criteria are optimized to maximize search sensitivity 22

Good separation between signal and background²³

Tau EDM: spin density matrix

$$\mathcal{L}_{eff} = \bar{\psi}(i \not\partial - eQ \notA)\psi - id_{\tau}\bar{\psi}\sigma^{\mu\nu}\gamma_{5}\psi\partial_{\mu}A_{\nu}$$

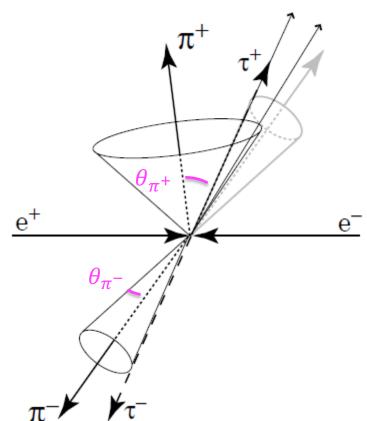
$$\stackrel{e^{+}}{\underset{k,\bar{p}: \text{Momenta of }\tau^{+} \text{ and }e^{+} \text{ beam}}{\overset{e^{+}}{\underset{e^{-}}{\tau^{+}}}} \stackrel{\tau^{*}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{+}}{\tau^{+}}} \stackrel{e^{+}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{-}}{\tau^{+}}} \stackrel{e^{+}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{-}}{\tau^{+}}} \stackrel{e^{+}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{-}}{\tau^{+}}} \stackrel{e^{+}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{-}}{\tau^{+}}} \stackrel{e^{+}}{\underset{e^{-}}{\tau^{+}}} \stackrel{e^{+}}{\underset{e^{-}}{\tau^{+}}} \stackrel{e^{+}}{\underset{e^{-}}{\tau^{+}}} \stackrel{e^{-}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{-}}{\tau^{+}}} \stackrel{e^{+}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{-}}{\tau^{+}}} \stackrel{e^{-}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{-}}{\tau^{+}}} \stackrel{e^{-}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{-}}{\tau^{+}}} \stackrel{e^{-}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{-}}{\tau^{+}}} \stackrel{e^{-}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{-}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{-}}{\underset{e^{-}}{\tau^{+}}} \stackrel{\tau^{*}}{\underset{e^{-}}$$

$$\mathcal{M}_{d^2}^2 = 4e^2 |\boldsymbol{k}|^2 \cdot (1 - (\hat{\boldsymbol{k}}\hat{\boldsymbol{p}})^2)(1 - \boldsymbol{S}_+ \boldsymbol{S}_-), \tag{6}$$

2022/7/8

24

Tau EDM: calculation from data


- Need tau flight direction to obtain χ_{Re}, χ_{Im}
- Both tau leptons decay hadronically : $\tau \tau \rightarrow (\pi \nu)(\pi \nu)$
- CM frame: $p_{\nu}^2 = (p_{\tau} p_{\pi})^2 \rightarrow 0 = m_{\tau}^2 + m_{\pi}^2 + 2E_{\tau}E_{\pi} 2|\vec{p}_{\tau}||\vec{p}_{\pi}|cos\theta_{\pi}$

$$\rightarrow \cos\theta_{\pi^{\pm}} = \frac{2E_{\tau}E_{\pi^{\pm}} - m_{\pi^{\pm}}^2 - m_{\tau}^2}{2|\vec{p}_{\tau}||\vec{p}_{\pi^{\pm}}|}$$

- $ee \rightarrow \tau\tau$: back-to-back
- \rightarrow Two-fold ambiguity
- Tau leptons decay leptonically

•
$$cos\theta_{\pi^{\pm}} = \frac{2E_{\tau}E_{\pi^{\pm}} - m_{\pi^{\pm}}^2 - m_{\tau}^2 + m_{\nu\nu}^2}{2|\vec{p}_{\tau}||\vec{p}_{\pi^{\pm}}|}$$

 \rightarrow Additional ambiguity ($m_{\nu\nu}^2$)

JHEP 2204, 110

^{2022/7/8} Take an average over the possible tau directions ²⁵

the

(21)

where $k_{\pm} = (k_0, \pm k), \ H^{\pm} = (H_0^{\pm}, H^{\pm}), \ \text{and} \ k_{\pm} H^{\pm}$ is the four-vector product. Here, $p_{\pi^{\pm}}$ and $p_{\pi^{0}}$ are the fourmomenta of the final state π^{\pm} and π^{0} .

 $+(p_{\pi\pm}+p_{\pi^0})^{\nu}(p_{\pi\pm}-p_{\pi^0})^2,$

 $A = \frac{1}{(k + H^{\pm}) - m^2(n + - n_{\pm})^2},$

2022/7/8

th m

For $\tau \to \rho \nu_{\tau} \to \pi \pi^{0} \nu_{\tau}$,

where
$$k_0$$
 is the energy of the τ^{\pm} , m_{τ} is the τ mass, \boldsymbol{k} is the three-momentum of the τ^+ , $\boldsymbol{p}_{\ell^{\pm}}$, $E_{\ell^{\pm}}$ and m_{ℓ} are the momentum, energy and mass of ℓ^{\pm} , respectively.

 $\boldsymbol{S}_{\pm} = \mp A \left(\mp H_0^{\pm} \boldsymbol{k} + m_{\tau} \boldsymbol{H}^{\pm} + \frac{\boldsymbol{k} (\boldsymbol{k} \cdot \boldsymbol{H}^{\pm})}{(k_0 + m_{\tau})} \right),$

 $(H^{\pm})^{\nu} = 2(p_{\pi^{\pm}} - p_{\pi^{0}})^{\nu}(p_{\pi^{\pm}} - p_{\pi^{0}})^{\mu}(k_{\pm})_{\mu}$

$$A = \frac{4c_{\pm} - m_{\tau}^2 - 3m_{\ell}^2}{3m_{\tau}^2 c_{\pm} - 4c_{\pm}^2 - 2m_{\ell}^2 m_{\tau}^2 + 3c_{\pm}m_{\ell}^2},$$

0

εμεπμπερμρπρρηπ

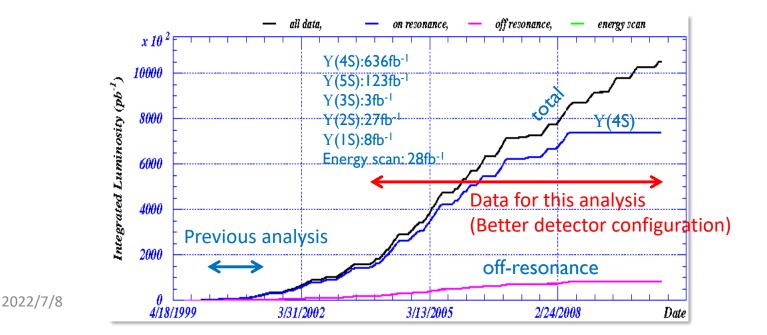
Tau EDM: spin density matrix ¹⁵We can reconstruct the τ 's spin vectors, S, using the flight direction

of the τ and the observed daughter particles

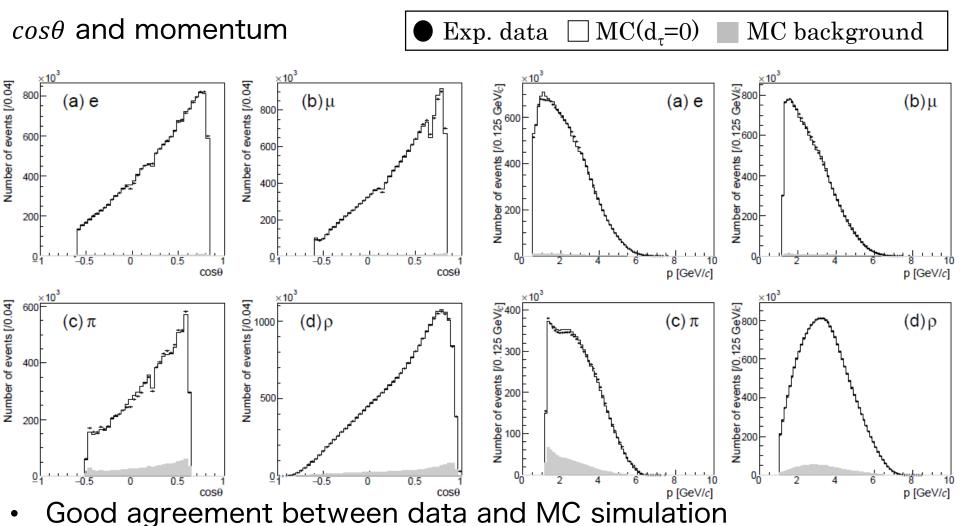
 0 eμ eπ μπ eρ μρ πρ pp ππ

Spin vector shows the most probable direction of the spin in the τ

rest frame For $\tau \to \ell \nu_\ell \nu_\tau$,)5


 $oldsymbol{S}_{\pm} = A\left(\pm m_{ au}oldsymbol{p}_{\ell^{\pm}} - rac{c_{\pm} + E_{\ell^{\pm}}m_{ au}}{k_0 + m_{ au}}oldsymbol{k}
ight),$ (20)

 $c_{\pm} = k_0 E_{\ell \pm} \mp \boldsymbol{k} \cdot \boldsymbol{p}_{\ell \pm},$


JHEP 2204, 110

Tau EDM: experimental data

- 833 fb⁻¹ of Belle data
- 28 times larger than previous analysis (~5 times less stat error)
- Improved detector understanding compared to previous analysis
 - Better correction parameters for tracking, particle IDs
 - Improvement on the MC simulation
- More beam background contribution to photons (beam bkg)

Tau EDM: selected data

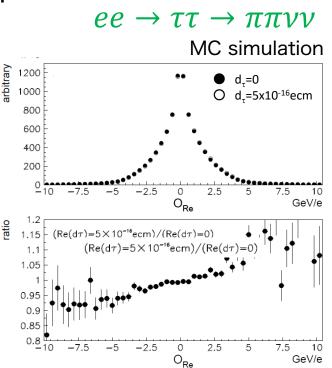
 There are small mismatches in the distribution, which will be taken into account for the systematic error

Tau EDM: Observable

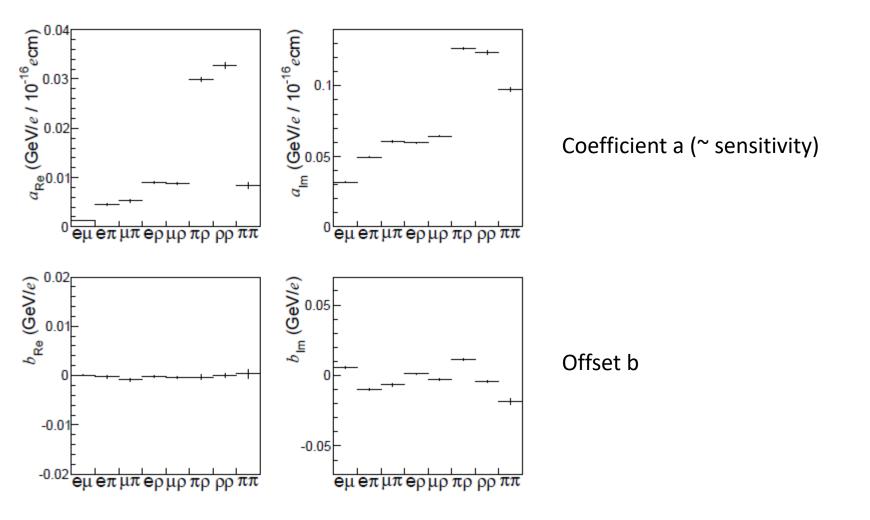
Use optimal observable to measure EDM

PRD 45(1992)2405

$$\mathcal{O}_{\mathrm{Re}} = rac{\chi_{\mathrm{Re}}}{\chi_{\mathrm{SM}}}, \quad \mathcal{O}_{\mathrm{Im}} = rac{\chi_{\mathrm{Im}}}{\chi_{\mathrm{SM}}}.$$

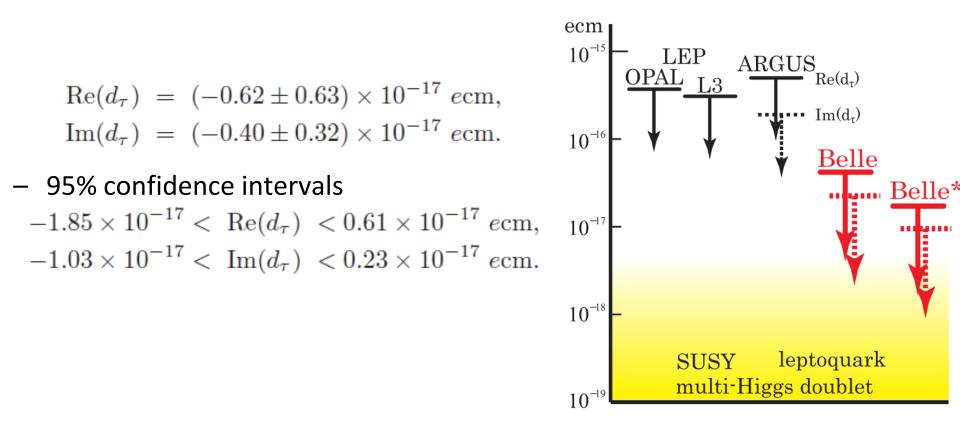

Calculate event-by-event

 Using tau flight direction and spin direction from decay products


Average value is proportional to EDM

$$\langle \mathcal{O}_{\rm Re} \rangle \propto \int \mathcal{O}_{\rm Re} \chi_{\rm prod} d\phi = \int \chi_{\rm Re} d\phi + {\rm Re} (d_{\tau}) \int \frac{(\chi_{\rm Re})^2}{\chi_{\rm SM}} d\phi$$

$$\langle \mathcal{O}_{\rm Re} \rangle = a_{\rm Re} {\rm Re}(d_{\tau}) + b_{\rm Re}, \ \langle \mathcal{O}_{\rm Im} \rangle = a_{\rm Im} {\rm Im}(d_{\tau}) + b_{\rm Im},$$



Tau EDM: conversion parameters

- The $\rho\rho$ and $\pi\rho$ modes have higher sensitivity, because of less neutrinos
- Offset b_{Im} due to the forward/backward asymmetric acceptance

Tau EDM: sensitivity

- Detector modeling limits our results
- Good event vertex resolution to obtain tau direction information will improve the sensitivity for future analysis