

Results from angular analyses of B meson decays in CMS

Alessio Boletti (LIP, Lisbon) on behalf of the CMS Collaboration

9 July 2022 – ICHEP 2022 (Bologna)

- Introduction
- $B^0 \rightarrow K^*(892)^0 \mu\mu$ analysis on Run 1 data [PLB 753 (2016) 424]
- $B^+ \rightarrow K^+ \mu \mu$ analysis on Run 1 data [PRD 98 (2018) 112011]
- $B^+ \rightarrow K^*(892)^+ \mu\mu$ analysis on Run 1 data [JHEP 04 (2021) 124]
- $B^0 \rightarrow K^*(892)^0 \mu\mu$ extrapolation to HL-LHC

[CMS-PAS-FTR-18-033]

$b \rightarrow sll decays$

- $b \rightarrow$ sll decays are an excellent laboratory to probe new physics phenomena:
- Suppressed in SM (FCNC, forbidden tree-level)
- NP phenomena can affect BR or angular distributions of final state
- $\mbox{Pseudoscalar } B^{+} \rightarrow K^{+} \, \mu \mu \, decay$
- muon direction defines one angular variable
- allows measuring the muon forward-backward asymmetry
- Vector-state $B \rightarrow K^*\mu\mu$ decays
- muon direction and K* polarisation define three helicity angles
- allows measuring a large set of angular parameters, sensitive to EFT coefficients

Global fit

- Tensions with SM predictions have been observed in one angular parameter, P'_5 , in $B^0 \rightarrow K^{*0} \mu \mu$ decay $_{\overline{d}a}$
- Set of **coefficients of the effective Hamiltonian** of b-s-l-l vertex (Wilson coefficients) can be derived from measurements of angular parameters
- This allows comparing and combining results from different decays (including BR, LFU, and B_s->II)

$\begin{aligned} \frac{\mathrm{d}^3\Gamma}{\mathrm{d}\cos\theta_l\mathrm{d}\cos\theta_\mathrm{K}\mathrm{d}\phi} &= \frac{9}{32\pi} \left[\frac{3}{4} F_T \sin^2\theta_K + F_L \cos^2\theta_K + \left(\frac{1}{4} F_T \sin^2\theta_K - F_L \cos^2\theta_K\right) \cos 2\theta_l \right. \\ &+ \frac{1}{2} P_1 F_T \sin^2\theta_K \sin^2\theta_l \cos 2\phi \\ &+ 2 P_2 F_T \sin^2\theta_K \cos\theta_l - P_3 F_T \sin^2\theta_K \sin^2\theta_l \sin 2\phi \\ &+ \sqrt{F_T F_L} \left(\frac{1}{2} P_4' \sin 2\theta_K \sin 2\theta_l \cos\phi + \frac{P_5}{5} \sin 2\theta_K \sin\theta_l \cos\phi \right) \\ &- \sqrt{F_T F_L} (P_6' \sin 2\theta_K \sin\theta_l \sin\phi - \frac{1}{2} P_8' \sin 2\theta_K \sin 2\theta_l \sin\phi) \right] \end{aligned}$

Angular analysis of $B \to K \mu \mu$ decays at CMS

- Analyses performed as a function of the dimuon invariant mass squared, q², whose spectrum is divided in bins
- **Resonant decays** used as normalisation and control channels:
 - $B \rightarrow K J/\psi (\rightarrow \mu \mu)$
 - $B \rightarrow K \psi(2S) (\rightarrow \mu \mu)$
- Parameter of interest extracted through fits to distributions of B-candidate mass and angular variables
- Analyses share same two-muon trigger, collecting data in 2012 run
- Effects of detector acceptance and reconstruction and selection efficiency described as function of angular variables and included in the fit PDF
- Statistical uncertainty extracted with profiled Feldman-Cousins procedure
 - ensuring that measurements are robust to borders of physical region of parameter space

$B^0 \rightarrow K^* \circ \mu \mu$ angular analysis

[PLB 753 (2016) 424] [PLB 781 (2018) 517]

20.5 fb⁻¹ (8 TeV)

Analysis of $B^0 \rightarrow K^{*0} \mu \mu$ decay had **two iterations**:

• The first one integrated over the ϕ angle, resulting in a 3D fit to measure branching ratio, forward-backward asymmetry, A_{FB} , and fraction of longitudinally polarized kaons, F_{L}

 $< a^2 < 6 \text{ GeV}^2$

 The second one used a 4D fit to all variables, and applied the variable folding to measure P₁ and P'₅ parameters

K^{*0} reconstructed in decay to K⁺ π ⁻

Main challenges deriving from:

- Integrating events with wrong K π mass assignment (~13%) in PDF
- Accurate description of efficiency with 3D function

20.5 fb⁻¹ (8 TeV)

Data

Total fit

Correctly tagged signal

٠

$B^0 \to K^{\mbox{*}\,\mbox{0}} \, \mu \mu \ results$

Predictions: [JHEP 01 (2013) 048] [JHEP 05 (2013) 137]

$B^+ \rightarrow K^+ \mu \mu$ angular analysis

Two parameter of interest extracted using 2D fit: \mathbf{F}_{H} and \mathbf{A}_{FB}

Analysis performed in 7 bins of q², plus two special inclusive ranges (clean q² region, full signal region)

Dominant systematic uncertainty from fitting procedure and description of the background shape					
Systematic uncertainty	$A_{\rm FB}~(\times 10^{-2})$	$F_{\rm H}~(\times 10^{-2})$			
Finite size of MC samples	0.4–1.8	0.9–5.0			
Efficiency description	0.1 - 1.5	0.1 - 7.8			
Simulation mismodeling	0.1 - 2.8	0.1 - 1.4			
Background parametrization model	0.1 - 1.0	0.1 - 5.1			
Angular resolution	0.1 - 1.7	0.1–3.3			
Dimuon mass resolution	0.1–1.0	0.1–1.5			
Fitting procedure	0.1–3.2	0.4–25			
Background distribution	0.1–7.2	0.1–29			
Total systematic uncertainty	1.6–7.5	4.4–39			

8

$B^+ \rightarrow K^+ \mu \mu$ results

Result dominated by statistical uncertainty in most q² bins (inner error bar)

No strong tensions observed with Standard Model predictions ([JHEP 12 (2014) 125], [JHEP 06 (2016) 092])

$B^+ \rightarrow K^{*+} \mu \mu$ angular analysis

3D fit to candidate's mass and two angles

- Angle φ integrated out to simplify fit
- F_L and A_{FB} measured

Efficiency affected by challenging K** reconstruction:

- in K^0_s (\rightarrow displaced $\pi^+\pi^-$) and soft π^+
- resulting in lower yield wrt neutral decay channel

Dominant systematic uncertainties

from background shape description

Analysis performed in 3 bins of q²

[JHEP 04 (2021) 124]

(angular projection in correspondence of peak region)

$B^+ \rightarrow K^* + \mu\mu$ results

- Result dominated by statistical uncertainty (inner error bar)
- Compatible with SM predictions

Predictions from: [JHEP 12 (2014) 125]

Prospects for $B^0 \rightarrow K^{* 0} \mu \mu$ analysis 12 at HL-LHC [CMS-PAS-FTR-18-033]

- Uncertainty on P'₅ from $B^0 \rightarrow K^{*0} \mu \mu$ analysis extrapolated to HL-LHC scenario at 3000 fb⁻¹
- Run 1 results used as baseline
- No changes in trigger performances and analysis strategy have been considered
- **Signal yield** obtained from MC simulations with Phase-2 detector upgrade and pileup of 200
 - Scaled to 3000 fb⁻¹ : ~ 700k events in the full q² range

Projections on P'₅ uncertainty (HL-LHC)

- Run 1 statistical uncertainty scaled according to the expected yield
- Systematic uncertainties based on data control channel scaled according to statistics
- Other systematic uncertainties scaled by factor of 2
- Total uncertainty is expected to improve by 15 times wrt Run 1 result
- Large signal yield allows to split q² range in finer bins

Summary and conclusions

FCNC rare decays have been extensively studied in Run 1 CMS data

- $B^{0} \rightarrow K^{\star\,0}\,\mu\mu$ angular analysis to measure $F_{L},\,A_{FB},\,P_{1}$ and P'_{5}
- $B^{\scriptscriptstyle +}\,{}_{\to}\,K^{\scriptscriptstyle +}\,\mu\mu$ angular analysis to measure $A_{\scriptscriptstyle FB}$ and $F_{\scriptscriptstyle H}$
- $B^{\scriptscriptstyle +}\,{}_{\to}\,K^{\star\,{}^{\scriptscriptstyle +}}\,\mu\mu$ angular analysis to measure $F_{\scriptscriptstyle L}$ and $A_{\scriptscriptstyle FB}$
- Prospects of B⁰ \rightarrow K^{* 0} µµ angular analysis in HL-LHC

Analyses on Run 2 data in advanced status

 dedicated trigger requiring two muons + 1 track with common vertex

Stay tuned!

Backup $(B^0 \rightarrow K^{*0} \mu \mu)$

PDF and decay rates

Integration of ϕ angle

$$\frac{1}{\Gamma} \frac{d^{3}\Gamma}{d\cos\theta_{K} d\cos\theta_{l} dq^{2}} = \frac{9}{16} \left\{ \frac{2}{3} \left[F_{S} + A_{S} \cos\theta_{K} \right] (1 - \cos^{2}\theta_{l}) + (1 - F_{S}) \left[2F_{L} \cos^{2}\theta_{K} (1 - \cos^{2}\theta_{l}) + (1 - F_{S}) \left[2F_{L} \cos^{2}\theta_{K} (1 - \cos^{2}\theta_{l}) + \frac{1}{2} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 + \cos^{2}\theta_{l}) + \frac{1}{2} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 + \cos^{2}\theta_{l}) + \frac{4}{3} A_{FB} (1 - \cos^{2}\theta_{K}) \cos\theta_{l} \right] \right\}.$$
Folding of θ_{l} and ϕ angles
$$\frac{1}{d\Gamma/dq^{2}} \frac{d^{4}\Gamma}{dq^{2} d\cos\theta_{\ell} d\cos\theta_{K} d\varphi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[(F_{S} + A_{S} \cos\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{4}{3} A_{FB} (1 - \cos^{2}\theta_{K}) \cos\theta_{l} \right] \right\}.$$
Folding of θ_{l} and ϕ angles
$$\frac{1}{d\Gamma/dq^{2}} \frac{d^{4}\Gamma}{dq^{2} d\cos\theta_{\ell} d\cos\theta_{K} d\varphi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[(F_{S} + A_{S} \cos\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + A_{S}^{5} \sqrt{1 - \cos^{2}\theta_{K}} \sqrt{1 - \cos^{2}\theta_{\ell}} \cos\phi_{l} \right] + \frac{f^{M}}{1 - f^{M}} S^{M}(m) S^{a}(-\theta_{K}, -\theta_{\ell}, \varphi) \epsilon^{M}(\theta_{K}, \theta_{\ell}, \varphi) + \frac{1}{2} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{K}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{l} (1 - F_{L}) (1 - \cos^{2}\theta_{K}) (1 - \cos^{2}\theta_{\ell}) + \frac{1}{2} P_{$$

Likelihood profiles

$B^0 \to K^{*0} \mu \mu$ systematics and results

Source	$P_1(\times 10^{-3})$	$P_5'(\times 10^{-3})$
Simulation mismodeling	1–33	10–23
Fit bias	5–78	10–120
Finite size of simulated samples	29–73	31–110
Efficiency	17–100	5–65
K π mistagging	8–110	6–66
Background distribution	12–70	10–51
Mass distribution	12	19
Feed-through background	4–12	3–24
$F_{\rm L}$, $F_{\rm S}$, $A_{\rm S}$ uncertainty propagation	0–210	0–210
Angular resolution	2–68	0.1–12
Total	100-230	70–250

$q^2 (\text{GeV}^2)$	Signal yield	P_1	P'_5	Correlations
1.00-2.00	80 ± 12	$+0.12\ ^{+0.46}_{-0.47}\pm 0.10$	$+0.10\ ^{+0.32}_{-0.31}\pm 0.07$	-0.0526
2.00-4.30	145 ± 16	$-0.69\ ^{+0.58}_{-0.27}\pm 0.23$	$-0.57\ ^{+0.34}_{-0.31}\pm 0.18$	-0.0452
4.30-6.00	119 ± 14	$+0.53\ ^{+0.24}_{-0.33}\pm 0.19$	$-0.96\ ^{+0.22}_{-0.21}\pm 0.25$	+0.4715
6.00-8.68	247 ± 21	$-0.47 {}^{+0.27}_{-0.23} \pm 0.15$	$-0.64\ ^{+0.15}_{-0.19}\pm 0.13$	+0.0761
10.09–12.86	354 ± 23	$-0.53\ ^{+0.20}_{-0.14}\pm 0.15$	$-0.69\ ^{+0.11}_{-0.14}\pm 0.13$	+0.6077
14.18–16.00	213 ± 17	$-0.33 \ ^{+0.24}_{-0.23} \pm 0.20$	$-0.66\ ^{+0.13}_{-0.20}\pm 0.18$	+0.4188
16.00-19.00	239 ± 19	$-0.53 \pm 0.19 \pm 0.16$	$-0.56 \pm 0.12 \pm 0.07$	+0.4621

Other results' comparisons

20

Fit projections from first analysis iteration

21

Backup $(B^+ \rightarrow K^+ \mu \mu)$

PDF and decay rate

$$\frac{1}{\Gamma_{\ell}}\frac{\mathrm{d}\Gamma_{\ell}}{\mathrm{d}\cos\theta_{\ell}} = \frac{3}{4}(1-F_{\mathrm{H}})(1-\cos^{2}\theta_{\ell}) + \frac{1}{2}F_{\mathrm{H}} + A_{\mathrm{FB}}\cos\theta_{\ell}.$$

 $pdf(m, \cos \theta_{\ell}) = Y_{S}S_{m}(m)S_{a}(\cos \theta_{\ell})\epsilon(\cos \theta_{\ell}) + Y_{B}B_{m}(m)B_{a}(\cos \theta_{\ell}),$

Efficiency functions

Comparison with LHCb results

$B^+ \rightarrow K^+ \mu \mu$ systematics and results

				CMC		20	$5 \text{fb}^{-1} / 9 \text{Ta} /$
Systematic uncertainty	A_{FB} ($\times 10^{-2})$	$F_{\rm H}~(\times 10^{-2})$	$> 10^5$		20	
Finite size of MC samples	0.4	-1.8	0.9–5.0				
Efficiency description	0.1	-1.5	0.1 - 7.8				<u>A</u>
Simulation mismodeling	0.1	-2.8	0.1 - 1.4	0.10^{3}			
Background parametrization mode	el 0.1	-1.0	0.1 - 5.1	\sim		j :	
Angular resolution	0.1	-1.7	0.1–3.3			لها كمس	
Dimuon mass resolution	0.1	-1.0	0.1 - 1.5				
Fitting procedure	0.1	-3.2	0.4–25				
Background distribution	0.1	-7.2	0.1–29				
Total systematic uncertainty	1.6	-7.5	4.4–39	1 1.:	5 2 2	.s 3 3.: m((µ⁺µ¹) (GeV)
=	q^2 (GeV ²)	Ŷs	$A_{\rm FB}$	F _H	$F_{\rm H}({\rm EOS})$	F _H (DHMV)	F _H (FLAVIO)
-	1.00-2.00	169 ± 22	$0.08\ ^{+0.22}_{-0.19}\pm 0.05$	$0.21\ ^{+0.29}_{-0.21}\pm 0.39$	0.047	0.046	0.045
	2.00-4.30	331 ± 32	$-0.04 \ ^{+0.12}_{-0.12} \pm 0.07$	$0.85\ ^{+0.34}_{-0.31}\pm 0.14$	0.024	0.023	0.022
	4.30-8.68	785 ± 42	$0.00 \ ^{+0.04}_{-0.04} \pm 0.02$	$0.01 \ ^{+0.02}_{-0.01} \pm 0.04$	—	0.012	0.011
	10.09–12.86	365 ± 29	$0.00 \ ^{+0.05}_{-0.05} \pm 0.05$	$0.01 \ ^{+0.02}_{-0.01} \pm 0.06$	—	—	
	14.18–16.00	215 ± 19	$0.01 \ ^{+0.06}_{-0.05} \pm 0.02$	$0.03 \ ^{+0.03}_{-0.03} \pm 0.07$	0.007	0.007	0.006
	16.00-18.00	262 ± 21	$0.04 \ ^{+0.05}_{-0.04} \pm 0.03$	$0.07\ ^{+0.06}_{-0.07}\pm 0.07$	0.007	0.007	0.006
	18.00-22.00	226 ± 20	$0.05 \ ^{+0.05}_{-0.04} \pm 0.02$	$0.10\ ^{+0.06}_{-0.10}\pm 0.09$	0.008	0.009	0.008
	1.00-6.00	778 ± 47	$-0.14 \ ^{+0.07}_{-0.06} \pm 0.03$	$0.38\ ^{+0.17}_{-0.21}\pm 0.09$	0.025	0.025	0.020
	1.00-22.00	2286 ± 73	$0.00 \ ^{+0.02}_{-0.02} \pm 0.03$	$0.01 \ ^{+0.01}_{-0.01} \pm 0.06$	_	—	_

Backup $(B^+ \rightarrow K^{*+} \mu \mu)$

$B^+ \rightarrow K^{*+}\mu\mu$ angular distribution

$B^+ \to K^{\star \star} \mu \mu \text{ efficiency}$

$B^{+} \rightarrow K^{\star \star} \mu \mu$ fit projections

Projections in full mass range

Projections in peak region

$B^{+} \rightarrow K^{*+} \mu \mu$ systematics and results

Source	$A_{ m FB}~(10^{-3})$	$F_{\rm L} (10^{-3})$	
MC statistical uncertainty	12 – 29	18 - 38	
Efficiency model	3 – 25	4 - 12	
Background shape functional form	0-9	0-33	
Background shape statistical uncertainty	16 – 73	20 - 87	
Background shape sideband region	28 - 153	38 - 78	
S-wave contamination	4 - 22	5 - 12	
Total systematic uncertainty	42 - 174	55 – 127	
q^2 (GeV ²) Y_S	$A_{ m FB}$		$F_{ m L}$
$1 - 8.68$ 22.1 ± 8.1 -	$-0.14^{+0.32}_{-0.35}$ =	± 0.17	$0.60^{+0.31}_{-0.25}\pm0.13$
$10.09 - 12.86 25.9 \pm 6.3$	$0.09^{+0.16}_{-0.11}$ =	± 0.04	$0.88^{+0.10}_{-0.13}\pm0.05$
$14.18 - 19$ 45.1 ± 8.0	$0.33^{+0.11}_{-0.07}$ =	± 0.05	$0.55^{+0.13}_{-0.10}\pm 0.06$