Study of Branching fraction and CP asymmetry of charm mesons at Belle

Aman Sangal

(on behalf of Belle collaboration)

Belle experiment at KEKB e^+e^- collider:

- KEKB: Asymmetric e^+e^- collider operating at and near 10.58 GeV [Υ (4S) mass peak]
- Belle detector was situated around e^+e^- interaction point.
- Belle experiment collected total $\sim 1 \text{ ab}^{-1}$ data including
 - $1.3 \times 10^9 c\bar{c}$ (charm factory)

• Belle experiment ran successful physics program with very good particle identification and vertexing performance.

Belle Detector

Motivation:

- Standard Model framework: Very small, $O(10^{-3})$ or smaller CP violation in charm meson decays [1].
- CP violation measurement significantly deviating from SM expectation would probe new physics contributions.
- Singly Cabibbo suppressed (SCS) charm meson decay, uniquely sensitive to new physics effects [1].
- Only CP violation observed in charm was in SCS decays [2].
- This talk present recent results from Belle experiment on:
 - Precision measurement of decay rates for Cabibbo suppressed charm meson decays
 - Search for CP violation in Cabibbo suppressed charm meson decays

[1] (Y. grossman, et al. Phys.Rev.D 75 (2007), 036008) [2] LHCb Collaboration Phys.Rev.Lett. 122 (2019) 21, 211803

Measurement of Branching Fraction and search for CP violation in $D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^-$

(Preliminary, paper to be submitted)

CP violating observable a_{CP}^{T} :

- Search for CP violation using T-odd triple product (TP) asymmetries.
- Define scalar triple product C_T as:

• $C_T = \vec{p}_{K_s^0} \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\pi^-})$ (K_s^0 with higher momentum is used)

• For D^0 decays, T-odd triple product asymmetry A_T is defined as :

• $A_T = \frac{N_1 (C_T > 0) - N_2 (C_T < 0)}{N_1 (C_T > 0) + N_2 (C_T < 0)}$

- For \overline{D}^0 decays, CP conjugate observables: $A_T \xrightarrow{CP} \bar{A}_T$, $C_T \xrightarrow{C} \bar{C}_T \xrightarrow{P} \bar{C}_T$ • $\bar{A}_T = \frac{N_3 (-\bar{C}_T > 0) - N_4 (-\bar{C}_T < 0)}{N_3 (-\bar{C}_T > 0) + N_4 (-\bar{C}_T < 0)}$
- The difference $a_{CP}^{T} = \frac{1}{2}(A_T \overline{A}_T)$ is a CP violating observable.

• a_{CP}^{T} :

Independent of effects from strong phases.

- Michael Gronau et.al PRD,495 84(9), Nov 2011.
- By construction, unaffected by D^0 versus \overline{D}^0 production and detection related asymmetries.

- I. I. Y. Bigi. Charm physics: Like Botticelli in the Sistine Chapel.
- Michael Gronau et.al PRD,495 84(9), Nov 2011.

CP violation measurement using *A_{CP}* :

• We can also search for *CP* violation using observable A_{CP} defined as:

$$A_{CP} = \frac{N(D^0 \to f) - N(\overline{D}^0 \to \overline{f})}{N(D^0 \to f) + N(\overline{D}^0 \to \overline{f})}$$

- It is the difference in number of D^0 and \overline{D}^0 decays to the *CP* conjugate final states f and \overline{f} .
- Measurement of both A_{CP} and a_{CP}^{T} are complementary to each other:
 - The observable $A_{CP} \propto sin(\phi) sin(\delta)$, where (ϕ) is weak and (δ) is strong phase difference between the contributing amplitudes.
 - The observable $a_{CP}^T \propto sin(\phi) cos(\delta)$
 - Non zero A_{CP} : strong phase difference (δ) must be non zero,
 - a_{CP}^{T} is largest when the strong phase difference (δ) is zero.
- <u>A. Datta</u> et.al, Int.J.Mod.Phys.A 19 (2004), 2505-2544

Reconstruction of decay at Belle detector

Impact parameter and PID cuts are Reconstructed decay chain and the applied on final state pion from $D^0 \& D^{*+}$. corresponding selection criteria K_{S}^{0} Multiple candidate events: choose a single candidate with K_{S}^{0} lowest value for $\sum \chi^2 / \text{ndf}$ of D^* , D^0 $K_{\rm s}^0$ reconstructed using standard Belle and K_s^0 vertex fit. • vertex fit is done for D^0 using pion neural network based method tracks Mass constrained vertex fit for both K_s^0 Same set of selection criteria for Cut is applied on vertex fit χ^2/ndf to suppress background normalization channel $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ IP constrained vertex fit is done for π_{slow} track D^{*+} momentum in e^+e^- CM frame required > 2.5 GeV/c Reconstruction efficiency: (to remove D from B decays) • 6.92% for $D^0 \to K^0_s K^0_s \pi^+ \pi^$ e • 14.97% for $D^0 \to K_s^0 \pi^+ \pi^-$ 3.5 GeV 8 GeV Fig. not to scale **Interaction Point (IP)**

Branching fraction measurement:

- Extracted signal events using 2d fit in variables:
 - $M_{D^0}[M(K_s^0 K_s^0 \pi^+ \pi^-)]$ and $\Delta M[M(K_s^0 K_s^0 \pi^+ \pi^- \pi^+_{slow}) M(K_s^0 K_s^0 \pi^+ \pi^-)]$
- BF($D^0 \to K_s^0 K_s^0 \pi^+ \pi^-$)/BF($D^0 \to K_s^0 \pi^+ \pi^-$) = [1.72 ± 0.03 (stat.) ± 0.04 (syst.)]%
- BF($D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^-$) = [4.82 ± 0.08 (stat.) $^{+0.10}_{-0.11}$ (syst.) ± 0.31 (norm.)] × 10⁻⁴ World's most precise measurement, compare to previous result (5.30 ± 0.90 (stat.) ± 0.30 (syst.)] × 10⁻⁴)

ICHEP 2022

A_{CP} measurement:

• The A_{CP} value obtained using below equation includes contribution from non CP violating production and reconstruction asymmetries: $A_{CP}^{\text{det}} = \frac{N(D^0 \rightarrow f) - N(\overline{D}{}^0 \rightarrow \overline{f})}{N(D^0 \rightarrow f) + N(\overline{D}{}^0 \rightarrow \overline{f})}$

 $A_{CP}^{\text{det}} = A_{CP} + A_{FB} + A_{\epsilon}^{\pi_s}$ Asymmetry due to difference in reconstruction efficiency between π_s^+ and π_s^- *CP* violating asymmetry

 $w_{D^0} = 1 - A_{\epsilon}^{\pi_s}(p_T, \cos\theta_{\pi_s})$

 $w_{\overline{D}^0} = 1 + A_{\epsilon}^{\pi_s}(p_T, \cos\theta_{\pi_s})$

- To account for $A_{\varepsilon}^{\pi_s}$, we weight the D^0 and \overline{D}^0 events as :
- Resulting A_{CP} now includes $A_{CP}^{cor} = A_{CP} + A_{FB}$.
- The forward backward asymmetry is odd function of $cos(\theta^*)$, where θ^* is D* polar angle in COM frame.
- For a given $\cos(\theta^*)$ bin, we obtain true *CP* violating asymmetry $A_{CP} = \frac{A_{CP}^{cor}(\cos\theta^*) + A_{CP}^{cor}(-\cos\theta^*)}{2}$
- The average of all positive $cos(\theta^*)$ bins will be quoted as final A_{CP} asymmetry.

A_{CP} measurement

Simultaneous fit for a_{CP}^{T} measurement:

• To measure a_{CP}^{T} , data sample is divided into four categories:

- To obtain a_{CP}^{T} , we perform a 2d fit simultaneously to these four datasets.
- $a_{CP}^{T} = [-1.95 \pm 1.42 \text{ (stat.)} ^{+0.14}_{-0.12} \text{ (syst.)}]\%$
- First search for CPV using T-odd observable in this decay
- Result Consistent with zero CP Violation.

Branching fraction measurement for $D^+ \rightarrow K^+ K^- \pi^+ \pi^0$, $D^+_{(s)} \rightarrow K^+ \pi^- \pi^+ \pi^0$

arXiv:2205.02018 [hep-ex]

$$D^+ \to K^+ K^- \pi^+ \pi^0$$
, $D^+_{(s)} \to K^+ \pi^- \pi^+ \pi^0$

- Measured $D^+ \rightarrow K^+ K^- \pi^+ \pi^0$, $D^+_{(s)} \rightarrow K^+ \pi^- \pi^+ \pi^0$ branching fractions
 - Used 988 fb⁻¹ of data
 - Measurement done relative to normalization modes: $D^+ \rightarrow K^- \pi^+ \pi^0$, $D_s^+ \rightarrow K^+ K^- \pi^+ \pi^0$
- Signal yields are extracted using fit to $M(D_{(s)}^+)$

Results:

Measured branching fraction ratios are: ٠

 $\frac{\mathcal{B}(D^+ \to K^+ K^- \pi^+ \pi^0)}{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+ \pi^0)} = (11.32 \pm 0.11 \pm 0.26)\%$ $\frac{\mathcal{B}(D^+ \to K^+ \pi^- \pi^+ \pi^0)}{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+ \pi^0)} = (1.68 \pm 0.08 \pm 0.03)\%$ $\frac{\mathcal{B}(D_s^+ \to K^+ \pi^- \pi^+ \pi^0)}{\mathcal{B}(D_s^+ \to K^+ K^- \pi^+ \pi^0)} = (17.13 \pm 0.46 \pm 0.51)\%,$

Measured branching fractions are: ٠

> $\mathcal{B}(D^+ \to K^+ K^- \pi^+ \pi^0) =$ $(7.08 \pm 0.07 \pm 0.16 \pm 0.20) \times 10^{-3}$ $\mathcal{B}(D^+ \to K^+ \pi^- \pi^+ \pi^0) =$ $\mathcal{B}(D_s^+ \to K^+ \pi^- \pi^+ \pi^0) =$ $(9.44 \pm 0.25 \pm 0.28 \pm 0.32) \times 10^{-3}$ First observation 7/6/22 **ICHEP 2022**

- Ratio of DCS/CF decay = $(5.83 \pm 0.30) \times tan^4 \theta_c$
- Significantly larger than (0.21 0.58) %, measured for other DCS decays
- Consistent with previous result (6.28 \pm 0.52) \times tan⁴ θ_c
- Possible explanation is presence of massive isospin symmetry violation in the decay (Phys. Rev. D 104, 072005)

Improved precision from latest measurements $B(D^+ \rightarrow K^+ K^- \pi^+ \pi^0) = (6.62 \pm 0.20 \pm 0.25) \times 10^{-3}$ $(1.05 \pm 0.05 \pm 0.02 \pm 0.03) \times 10^{-3}$ $B(D^+ \rightarrow K^+ \pi^- \pi^+ \pi^0) = (1.21 \pm 0.08 \pm 0.03) \times 10^{-3}$

Branching fraction and A_{CP} measurement for $D^0 \rightarrow \pi^+ \pi^- \eta$, $K^+ K^- \eta$, and $\phi \eta$

[JHEP09(2021)075]

Branching fraction:

[JHEP09(2021)075]

- Measured $D^0 \rightarrow \pi^+ \pi^- \eta$, $K^+ K^- \eta$, and $\phi \eta$ branching fractions
 - Using 988 fb⁻¹ of data, relative to normalization modes: $D^0 \rightarrow K^- \pi^+ \eta$
 - Signal yields are extracted using fit to Q = M[$K^+K^-\eta \pi^+_{slow}$] M[$K^+K^-\eta$] M[π^+_{slow}]

A_{CP} measurement:

[JHEP09(2021)075]

• Simultaneous fit for D^0 and \overline{D}^0 , Q distributions in bins of $\cos(\theta^*)$

Search for $D^+ \rightarrow K^- K^0_S \pi^+ \pi^+ \pi^0$ at Belle (Preliminary, paper to be submitted)

Search for $D^+ \rightarrow K^- K_s^0 \pi^+ \pi^+ \pi^0$

- SM CP violation is highly suppressed, $O(10^{-4})$ in the $\Delta I = 3/2$ transitions.
- Calculate asymmetry in $\Delta I = 3/2$ transition
 - Use five particle final state common to $D^+ \to K^* \overline{K}^* \pi$ charge configurations i.e. $D^+ \to K^- K_s^0 \pi^+ \pi^+ \pi^0$ to measure the following amplitude sum

$$\mathcal{A}(K^{*+}K^{*-}\pi^{+}) + \mathcal{A}(K^{*0}\overline{K}^{*0}\pi^{+}) + \sqrt{2}\mathcal{A}(K^{*+}\overline{K}^{*0}\pi^{0})$$

- Results:
 - $B(D^+ \rightarrow K^- K_s^0 \pi^+ \pi^+ \pi^0) = 6.4^{+3.9}_{-3.8} \times 10^{-5}$ with an upper limit at 95% credibility of 1.4×10^{-4} (Bayesian)
 - $B(D^+ \rightarrow \overline{K}^* \eta \pi^+ + D^+ \rightarrow \overline{K}^* \omega \pi^+) = 6.0^{+6.3}_{-5.8} \times 10^{-5}$ with an upper limit at 95% credibility of 1.8×10^{-4}

Summary:

Charm mesons BF measurements:

•
$$B(D^0 \to K_s^0 K_s^0 \pi^+ \pi^-) = [4.82 \pm 0.08 \text{ (stat.)} ^{+0.10}_{-0.11} \text{ (syst.)} \pm 0.31 \text{ (norm.)}] \times 10^{-4}$$

•	$B(D^0 \rightarrow z)$	$\pi^+\pi^-\eta)=$	$[1.22\pm0.02$	± 0.02	$\pm 0.03] \times 10^{-3}$
---	------------------------	--------------------	----------------	------------	----------------------------

- $B(D^0 \to K^+ K^- \eta) = [1.80^{+0.07}_{-0.06} \pm 0.04 \pm 0.05] \times 10^{-4}$
- $B(D^0 \to \phi \eta) = [1.84 \pm 0.09 \pm 0.06 \pm 0.05] \times 10^{-4}$

• $B(D^+ \to K^+ K^- \pi^+ \pi^0) = [7.08 \pm 0.07 \pm 0.16 \pm 0.20] \times 10^{-3}$ • $B(D^+ \to K^+ \pi^- \pi^+ \pi^0) = [1.05 \pm 0.05 \pm 0.02 \pm 0.03] \times 10^{-3}$ • $B(D_s^+ \to K^+ \pi^- \pi^+ \pi^0) = [9.44 \pm 0.25 \pm 0.28 \pm 0.32] \times 10^{-3}$

• $B(D^+ \rightarrow K^- K_s^0 \pi^+ \pi^+ \pi^0)$, upper limit at 95% credibility of $\mathbf{1}.4 \times \mathbf{10}^{-4}$

All reported BF measurements provides either world's best precision or first observation

CP violation measurements:

•
$$A_{CP}$$
, a_{CP}^{T} for SCS decay $D^{0} \rightarrow K_{s}^{0} K_{s}^{0} \pi^{+} \pi^{-}$

•
$$A_{CP} = \left[-2.51 \pm 1.44 \text{ (stat.)} \right]_{-0.52}^{+0.35} \text{ (syst.)} \times 10^{-2}$$

•
$$a_{CP}^{T} = [-1.95 \pm 1.42 \text{ (stat.)} ^{+0.14}_{-0.12} \text{ (syst.)}]\%$$

All reported CPV measurements consistent with zero CP violation

Backup

Systematics for $D^+ \rightarrow K^+ K^- \pi^+ \pi^0$, $D^+_{(s)} \rightarrow K^+ \pi^- \pi^+ \pi^0$

TABLE II. Fractional systematic uncertainties (in %) for the following ratios of branching fractions:

(a)	$\mathcal{B}(D^+)$	\rightarrow	K^+I	$K^-\pi^+\pi^0$	$\mathcal{B}(L)$)+	\rightarrow	$K^{-}\pi^{+}\pi$	$(+\pi^{0});$
(b)	$\mathcal{B}(D^+)$	$\rightarrow K$	$\pi^+\pi^-$	$(\pi^+\pi^0)/t$	$\mathcal{B}(D^+)$	\rightarrow	$K^{-}\pi$	$(\pi^{+}\pi^{+}\pi^{0});$	and
(c) .	$\mathcal{B}(D_s^+ \to$	$K^+\pi^-$	$\pi^+\pi^-$	$^{0})/\mathcal{B}(D_{s}^{1})$	$^+_{s} \rightarrow K^-$	$^+K^-$	$\pi^+\pi$	$^{0}).$	

Sources	(a)	(b)	(c)
PID efficiency correction	1.7		1.7
Multiple-candidate selection	1.1	1.3	1.2
Signal parameterization	0.5	0.5	1.1
M(D) resolution	0.5		1.4
Binning	0.6	0.5	0.7
Background Dalitz distribution	0.1	0.1	0.3
Efficiency correction bias	0.6	0.8	1.1
Total uncertainty	2.3	1.9	3.0

Systematics for $D^0 \rightarrow K_s^0 K_s^0 \pi^+ \pi^-$

Summary of systematic uncertainty for BF measurement:

 $K^{0}_{S} K^{0}_{S} \pi^{+} \pi^{-}$ $K_S^0 \pi^+ \pi^-$ Source (%)(%)Fixed PDF parameters 0.140.09 $D^0 \to K^0_S K^0_S K^0_S$ background 0.11Broken charm background 0.98MC statistics 0.260.17PID efficiency correction 0.800.74 K_S^0 reconstruction efficiency 0.830.36Tracking Efficiency 0.70+0.42 $M(\pi^+\pi^-)$ veto efficiency -0.93+0.02Fraction of mis-reconst. signal -0.03 $D^0 \rightarrow K^0_S K^0_S \pi^+ \pi^-$ decay model 0.73 $\mathcal{B}(K_S^0 \to \pi^+ \pi^-)$ 0.07+2.07Total for $\mathcal{B}_{K^0_S K^0_S \pi^+ \pi^-} / \mathcal{B}_{K^0_S \pi^+ \pi^-}$ -2.23

Summary of systematic uncertainties evaluated for a_{CP}^{T} :

Source	(%)
Fixed PDF parameters	0.010
$D^0 \rightarrow K^0_S K^0_S K^0_S$ background	$^{+0.000}_{-0.013}$
Broken charm background	$^{+0.014}_{-0.040}$
Efficiency variation with C_T , \overline{C}_T	$^{+0.14}_{-0.11}$
Total	$+0.14 \\ -0.12$

Summary of systematic uncertainties evaluated for A_{CP}

Sources	(%)
Fixed PDF parameters	± 0.01
$D^0 \rightarrow K^0_S K^0_S K^0_S$ background	$^{+0.02}_{-0.03}$
Broken charm background	$^{+0.09}_{-0.07}$
Binning in $\cos \theta^*$	$\substack{+0.33\\-0.51}$
Reconstruction asymmetry $A_{\epsilon}^{\pi_s}$	± 0.01
Fixed background fractions	± 0.04
Total	$^{+0.35}_{-0.52}$

Fina

ICHEP 2022